Problem Set Five: Limit Arithmetic

Theorem: Suppose \(a_n \to a \), \(b_n \to b \) and \(c \) is a constant.

(a) \(a_n + b_n \to a + b \)

(b) \(c a_n \to ca \)

(c) \(a_n b_n \to ab \)

(d) If \(b \neq 0 \) then \(b_n \) is eventually non-zero and \(a_n / b_n \to a/b \).

Example: For \(c \) any positive constant, \(c^{1/n} \to 1 \).

PROBLEMS

Problem 5-1: For any reals \(x \) and \(z \), \(|x| - |z| \leq |x - z| \). In consequence if \(a_n \to a \) then \(|a_n| \to |a| \).

Problem 5-2: For any non-negative reals \(x \) and \(z \), \(\sqrt{x} - \sqrt{z} \leq \sqrt{|x - z|} \). In consequence if \((a_n) \) has non-negative terms and \(a_n \to a \) then \(a \) is non-negative and \(\sqrt{a_n} \to \sqrt{a} \).

Problem 5-3 (Known to the Pythagoreans): There are no pairs of natural numbers with \(2a^2 = b^2 \) but there are pairs with \(2a^2 = b^2 \pm 1 \). Recursively define two sequences \((a_n) \) and \((b_n) \) like this; \(a_1 = 1 \), \(b_1 = 1 \), \(a_{n+1} = a_n + b_n \) for \(n > 1 \) and \(b_{n+1} = 2a_n + b_n \) for \(n > 1 \). Prove that \(2a_n^2 - b_n^2 = \pm 1 \) for each \(n \) and that \(b_n / a_n \to \sqrt{2} \).

Problem 5-4: For \(0 < c < 1 \) and \(p \) a fixed positive integer, \(n^p c^n \to 0 \). (Hint, use 3-5 and the product rule.)

Problem 5-5: If each \(a_n \) is positive and if the sequence of nth powers \((a_n)^n \) has a positive limit, then \(a_n \to 1 \).

Problem 5-6: (Cesaro’s Theorem): If \(a_n \to a \) and \((u_n) \) is the sequence of arithmetic averages \(u_n = [a_1 + a_2 + a_3 + \ldots + a_n] / n \), then \(u_n \to a \). Why doesn’t this follow from the sum rule?

Problem 5-7: For \(0 < a_1 < 1 \) define \((a_n) \) recursively by \(a_{n+1} = (1 - a_n)^2 \).

(a) Show that if \(a_n \to p \) then \(p = [3 - \sqrt{5}] / 2 \). In the remaining parts \(p \) is the same number.

(b) For any \(n \), \(|a_{n+1} - p| = |a_n - p| [2 - p - a_n] \).

(c) If \((a_n) \) converges, then \(a_n = p \) for all \(n \).