Math 482 Final Paper: Cantor Spaces in \mathbb{R}

This paper describes some basic properties of Cantor subspaces of the real line. It also includes an application of these Cantor subspaces to a characterization of the countability of closed subsets of \mathbb{R} in terms of some simple exterior measures.

Recall that a perfect set is a set for which every point is a limit point. A set S is called totally disconnected if for every $x, y \in S$, there exist disjoint open sets $U, V \subset S$ such that $x \in U$, $y \in V$, and $U \cup V = S$.

Definition 1. A Cantor space is a non-empty, totally disconnected, perfect, compact metric space.

Example 1. Let $C_0 := [0, 1]$, $C_1 := [0, 1/3] \cup [2/3, 1]$, and $C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$. Similarly, for $i > 2$, let C_i be the closed set given by removing the open middle third of each interval of C_{i-1}. The ternary Cantor set

$$\Delta := \bigcap_{i=0}^{\infty} C_i$$

is a Cantor space.

Proof. Since $0 \in C_i$ for all i, Δ is non-empty. Since each interval in C_i is of length 3^{-i}, Δ is totally disconnected. It is closed and bounded, so compact by the Heine-Borel theorem.

To see that Δ is perfect, first note that the endpoints of any interval in any C_i remain endpoints of intervals in C_{i+1}, and $C_{i+1} \subset C_i$. Hence, every point that is an endpoint of an interval in some C_i is in Δ. Now, fix $x \in \Delta$. Given $\epsilon > 0$, there exists a C_i whose intervals are of length less than ϵ. Hence, both endpoints of the interval in C_i containing x are within ϵ of x, and are members of Δ. Thus, x is a limit point, so Δ is perfect.

Theorem 1. Let K be a Cantor space. If $A \subset K$ is nonempty and clopen, then A is Cantor.

Proof. A is compact since it is closed in K, and totally disconnected since it is open. To see that A is perfect, let $x \in A$. Since K is perfect, there exists a sequence $(x_n) \subset K$ such that $x_n \to x$. Since A is open, all but a finite number of x_n lie in A.

Theorem 2. If $A \subset \mathbb{R}$ is a Cantor space, then there is an order-preserving homeomorphism $f : A \to \{0, 1\}^\mathbb{N}$, where $\{0, 1\}^\mathbb{N}$ is ordered lexicographically and equipped with the product metric $d(x, y) = \sum_{i=1}^{n} |x(i) - y(i)| 2^{-i}$.
Theorem 1. Moreover, diam(M) ≤ $\frac{3}{4}$diam(A) for $i = 0, 1$.

Step 2. For $n > 1$, apply Step 1 to M_i for each $t \in \{0, 1\}^{n-1}$ to get clopen Cantor spaces $M_{t,0}, M_{t,1} \subseteq M_t$ with $M_{t,0} < M_{t,1}$ and diam$(M_{t,i}) \leq \frac{3}{4}$diam$(M_i)$ for $i = 0, 1$. By recursion on n, for all $r, s \in \{0, 1\}^n$ we have diam$(M_s) \leq (\frac{3}{4})^n$ diam(A), and if $r < s$ in the lexicographical ordering then $M_r < M_s$, i.e. $x \in M_r, y \in M_s$ implies $x < y$. Moreover, for any fixed n, $A = \bigcup_{t \in \{0, 1\}^n} M_t$.

Step 3. Fix $x \in A$. The construction in Step 2 generates a descending sequence of sets $(M_{t_n})_{t_n \in \{0, 1\}^n}$, containing x. Since for all n we have $t_{n+1} = t_n$, for some $i \in \{0, 1\}$, this sequence of sets determines a unique element $f(x) = \sum_{i=0}^{\infty} x(i)2^{-i}$ such that, for any n, the first n entries of $f(x)$ are t_n. To see that f is bijective, note that if $t \in \{0, 1\}^n$ and $t_n = (t(1), t(2), \ldots, t(n))$, then $f^{-1}(t) = \bigcap_{i=0}^{\infty} M_{t_i}$ contains exactly one point, since M_{t_i} is a descending chain of compact sets with diameters going to 0.

To see that f is continuous, let $x \in A$. If $x_m \rightarrow x$ then, for every M_{t_n} containing x, all but finitely many x_m lie in M_{t_n}, since M_{t_n} is open relative to A. Thus, $f(x_m) \rightarrow f(x)$ since diam$(f(M_{t_n})) = 2^{-n} \rightarrow 0$ as $n \rightarrow \infty$. Since A is compact, the continuity of f implies f^{-1} is also continuous.

To see that f is order-preserving, if $x < y$ there exists n so large that $x \in M_n, y \in M_s$ for s, t of length n with $s \neq t$. By Step 2, this implies $s < t$. Hence, $f(x) < f(t)$.

Theorem 3. If $S \subseteq \mathbb{R}$ is a Cantor space, there exists a nondecreasing, onto, continuous function $g : S \rightarrow [0, 1]$.

Proof. Let $h : \{0, 1\}^N \rightarrow [0, 1]$ be defined by $h(x) = \sum_{i=0}^{\infty} x(i)2^{-i}$. Defining f as in Theorem 2, let $g = h \circ f$. Thus, it suffices to show that h is nondecreasing, onto, and continuous.

Let $x, y \in \{0, 1\}^N$. Then $|h(x) - h(y)| = \sum_{i=0}^{\infty} (x(i) - y(i))2^{-i} = \sum_{i=0}^{\infty} |x(i) - y(i)|2^{-i} = d(x, y)$, so h is continuous. If $x < y$, then there exists a minimal n such that $x(n) \neq y(n)$. By the definition of lexicographical ordering, $x(n) = 0$ and $y(n) = 1$. Thus, $h(y) - h(x) = \sum_{i=0}^{\infty} (y(i) - x(i))2^{-i} = 2^{-n} + \sum_{i=n+1}^{\infty} (y(i) - x(i))2^{-i} \geq 2^{-n} + \sum_{i=n+1}^{\infty} (-1)2^{-i} = 0$. Hence, h is nondecreasing. To see that h is onto, let $E_n := \{x \in \{0, 1\}^N : x(i) = 0 \text{ for all } i > n\}$. Then each $h(E_n)$ is a 2^{-n-1}-net for $[0, 1]$, so the image of h is dense in $[0, 1]$. Since S is compact, $h(S)$ is compact, so h is onto.

Lemma 1. If $f : [a, b] \rightarrow [0, 1]$ is nondecreasing and onto, then f is continuous.

Proof. Let $c \in (a, b]$. Since f is nondecreasing, $\sup_{x < c} f(x) \leq f(c) = \inf_{x \geq c} f(x)$. Hence, since f is onto, $\sup_{x < c} f(x) = f(c)$. To see that $f(c-) = f(c)$, set $\epsilon > 0$. By the definition of supremum, there exists $a < c$ such $f(c) - f(a) < \epsilon$. Then if $a < x < c$, since f is nondecreasing, $f(c) - f(x) < \epsilon$. Hence, $f(c-) = f(c)$.

The proof for right continuity is analogous.\hfill \Box
Lemma 2. Every compact metric space \(K \) can be written as \(K = A \cup B \), where \(A \) is perfect (hence compact), \(B \) is countable, and \(A \cap B = \emptyset \).

Proof. Let \(U \) be a countable base for \(K \). Let \(V := \{ S \in U : S \) is countable\}, and \(W := U \setminus V \). Then \(B := \bigcup_{S \in V} S \) is countable and open. Let \(A := K \setminus B \). Then \(A \) is closed, hence compact.

I claim that \(W := \{ S \cap A : S \in W \} \) is a base for the topology of \(A \). Suppose \(C \subset A \) is open in \(A \), and \(x \in C \). Then \(C \cup B \) is open in \(K \), so there exists \(S \in U \) with \(x \in S \subset (C \cup B) \). Since \(x \notin B \), \(S \) cannot be countable, so \(S \in W \). Hence, \(x \in S \cap A \subset C \), so \(W \) is a base for \(A \).

Note that every element of \(W \) is uncountable, so, since \(B \) is countable, every element of \(W \) is also uncountable. Thus, \(A \) has no isolated points, so \(A \) is perfect.

Definition 2. Given a nondecreasing function \(\alpha : \mathbb{R} \rightarrow \mathbb{R} \), the \(\alpha \)-exterior measure of a set \(E \subset \mathbb{R} \) is defined to be

\[
m^*_\alpha(E) := \inf \left\{ \sum_{i=1}^{\infty} \alpha(b_i) - \alpha(a_i) : E \subset \bigcup_{i=1}^{\infty} (a_i, b_i) \right\}
\]

Theorem 4. Let \(E \subset \mathbb{R} \) be a closed set. Then \(E \) is countable iff \(m^*_\alpha(E) = 0 \) for all nondecreasing, continuous \(\alpha : \mathbb{R} \rightarrow \mathbb{R} \).

Proof. The forward implication is obvious. For the converse, suppose \(E \) were uncountable. If \(E \) contains a nontrivial interval, then let \(\alpha \) be the identity. Since \(E \) contains an interval, it contains a compact set of the form \([a, b]\) for \(a < b \). Hence, any cover of \(E \) by open intervals must contain a finite subcover of \([a, b]\). The sum of the lengths of intervals in this subcover must be at least \(b - a \), so \(m^*_\alpha(E) \geq b - a > 0 \), a contradiction.

Suppose \(E \) does not contain any nontrivial intervals. Note that \(E \cap [n, n+1] \) must be uncountable for some \(n \), so WLOG, \(E \) is compact. Then, by Lemma 2, \(E = A \cup B \) where \(A \) is a Cantor space and \(B \) is countable. Since \(A \subset E \), \(m^*_\alpha(A) \leq m^*_\alpha(E) \), so it suffices to show that \(m^*_\alpha(A) > 0 \).

Let \(f : A \rightarrow [0, 1] \) be the increasing, onto, continuous function defined in Theorem 3. Define

\[
\alpha(x) = \begin{cases}
0 & : x \leq \inf(A) \\
\sup\{ f(y) : y \in A \cap (-\infty, x) \} & : x > \inf(A)
\end{cases}
\]

Since \(A \) is closed and \(f \) is onto \([0, 1] \), \(\alpha \) is onto \([0, 1] \). Also, \(\alpha \) is clearly non-decreasing. Since \(\alpha \) is constant outside \((\inf(A), \sup(A))\), Lemma 1 implies \(\alpha \) is continuous.

Let \(U \) be a cover of \(A \) by open intervals. Since \(A \) is compact, there exists a finite subcover \(F \subset U \). Denote the elements of \(F \) by \(((a_i, b_i))_{i=1}^{n} \), sorted so that \(a_i \leq a_{i+1} \) for all \(i < n \). If \(b_{i+1} < b_i \) for some \(i < n \), then \((a_{i+1}, b_{i+1}) \subset (a_i, b_i)\). Since \(F \) is finite, we can recursively throw out all such redundant sets. This procedure only reduces the sum of interval lengths of \(F \), so we may assume
\(b_i \leq b_{i+1} \) for all \(i < n \). For \(i < n \), if \(b_i \geq a_{i+1} \), then \(\alpha(b_i) - \alpha(a_{i+1}) \geq 0 \) since \(\alpha \) is nondecreasing. On the other hand, if \(b_i < a_{i+1} \), then \(\alpha(b_i) - \alpha(a_{i+1}) = 0 \) since \(A \cap [b_i, a_{i+1}] = \emptyset \).

Thus, \(\sum_{i=1}^{n} \alpha(b_i) - \alpha(a_i) \geq \alpha(b_n) - \alpha(a_1) = 1 \). Hence, \(m^*_\alpha(A) \geq 1 \). \(\Box \)

Acknowledgements

I am grateful to Bill Johnson for discussing this material in his Math 446/447 Real Analysis courses at Texas A&M University. I am also indebted to Dave Larson for his advice and instruction.

References
