MATH 304 ASSIGNMENT 5

All problems are from Leon’s *Linear Algebra*, eighth edition, unless otherwise specified. Turning in extra problems will *not* result in any extra credit.

0. **NOT TO BE TURNED IN**

The following problems are meant to test your understanding but are not to be turned in.
- Section 3.2: 1, 2, 3, 4, 14.

1. **TO BE TURNED IN**

Please complete these problems on a separate sheet of paper and hand them in.

1. (Section 3.2, problem 1(d)): Determine whether the following set is a subspace of \mathbb{R}^2:
 \[
 \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : |x_1| = |x_2| \right\}
 \]
 If it is a subspace, show it is. If not, explain why not.

2. (Section 3.2, problem 2(c)): Determine whether the following set is a subspace of \mathbb{R}^3:
 \[
 \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_3 = x_1 + x_2 \right\}
 \]
 If it is a subspace, show it is. If not, explain why not.

3. (Section 3.2, problem 4(d)): Determine the null space of the following matrix:
 \[
 \begin{pmatrix}
 1 & 1 & -1 & 2 \\
 2 & 2 & -3 & 1 \\
 -1 & -1 & 0 & -5
 \end{pmatrix}
 \]

4. (Section 3.2, problem 8): Let A be a fixed matrix in $\mathbb{R}^{n \times n}$ and let S be the set of all matrices that commute with A, i.e.,
 \[
 S = \left\{ B \in \mathbb{R}^{n \times n} : AB = BA \right\}.
 \]
 Show that S is a subspace of $\mathbb{R}^{n \times n}$.

5. (Section 3.2, problem 11): Determine whether the following are spanning sets for \mathbb{R}^2:
 \[
 \begin{align*}
 &\text{(a)} \quad \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\} \\
 &\text{(b)} \quad \left\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 6 \end{pmatrix} \right\} \\
 &\text{(c)} \quad \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \\
 &\text{(d)} \quad \left\{ \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ -4 \end{pmatrix} \right\}
 \end{align*}
 \]

Date: 25 February 2015.
(e) \(\left\{ \left(\frac{1}{2}, \frac{-1}{1} \right) \right\} \)

6. (Section 3.2, problem 20): Let \(U \) and \(V \) be subspaces of a vector space \(W \). Prove that their intersection \(U \cap V \) is also a subspace of \(W \).

7. (Section 3.2, problem 21): Let \(S \) be the subspace of \(\mathbb{R}^2 \) spanned by \(e_1 \) and let \(T \) be the subspace of \(\mathbb{R}^2 \) spanned by \(e_2 \). Is \(S \cup T \) a subspace of \(\mathbb{R}^2 \)? Explain.

2. Extra practice

These problems are suggested in case you would like extra practice with the concepts from class. They are not to be turned in.

- Section 3.2: Problems 5, 6, 7, 10, 12, 15, 22.