1. Determine whether the following statements are true (T) or false (F).

 (a) (2 points) If $L : V \to W$ is a linear transformation, then $\ker L$ is a subspace of V.

 (a)

 (b) (2 points) If $L : V \to W$ is a linear transformation, then the range of L is a subspace of W.

 (b)

 (c) (2 points) If E is an ordered basis for V, $L : V \to V$ is a linear transformation, and A is the matrix representing L relative to E, then $v \in \ker L$ if and only if $[v]_E \in N(A)$.

 (c)

2. (4 points) Let S be the subspace of $C[a, b]$ spanned by e^x and xe^x. Let D be the differentiation operator acting on S. Find the matrix representing D with respect to the basis $[e^x, xe^x]$.