1. Consider the following differential equation:

\[y'' + 9y' + 8y = g(t). \]

Find the general solution of the inhomogeneous equation when:

(a) \(g(t) = 60 \sin(2t) \)

Solution: The characteristic equation for the homogeneous equation \(y'' + 9y' + 8y = 0 \) is \(r^2 + 9r + 8 = 0 \), which has roots \(r = -8 \) and \(r = -1 \). The general solution of the homogeneous problem is thus

\[y_h = c_1 e^{-t} + c_2 e^{-8t}. \]

Use method of undetermined coefficients, make guess

\[y_p = A \sin(2t) + B \cos(2t), \]

so that

\[y'_p = 2A \cos(2t) - 2B \sin(2t) \]
\[y''_p = -4A \sin(2t) - 4B \cos(2t) \]

Plugging our guess into the equation yields:

\[(-4A - 18B + 8A) \sin(2t) + (-4B + 18A + 8B) \cos(2t) = 60 \sin(2t), \]

i.e., we want \(A \) and \(B \) to satisfy

\[4A - 18B = 60 \]
\[18A + 4B = 0, \]

so we have \(A = 12/17 \) and \(B = -54/17 \). The general solution is thus

\[y = \frac{12}{17} \sin(2t) - \frac{54}{17} \cos(2t) + c_1 e^{-8t} + c_2 e^{-t}. \]

(b) \(g(t) = e^{-t} \)

Solution: \(e^{-t} \) is a solution of the homogeneous equation, so we modify our guess to \(y_p = Ate^{-t} \), so that

\[y'_p = Ae^{-t} - Ate^{-t} \]
\[y''_p = Ate^{-t} - 2Ae^{-t} \]
and so, plugging back into the equation, we have

\[(A - 9A + 8A)te^{-t} + (-2A + 9A)e^{-t} = e^{-t},\]

i.e., we want \(7A = 1\), so \(y = \frac{1}{7}te^{-t}\) is a solution, and the general solution is

\[y = \frac{1}{7}te^{-t} + c_1e^{-t} + c_2e^{-8t}\]

2. A mass of 100g stretches a spring 5cm. If the mass is set in motion from its equilibrium position with a downward velocity of 10 cm/s and if there is no damping, write a differential equation (with initial values) describing the position \(u\) of the mass at any time \(t\).

Solution: The mass stretches the string 5cm, so we must have \(5k = 100(g)\), where \(g = 980\text{cm/s}^2\). We thus have \(k = 20 \times 980\). No damping means that \(\gamma = 0\) and so the differential equation describing the position \(u\) is

\[mu'' + ku = 0,\]

where \(k\) is as above.

For the initial conditions, it is set in motion from its equilibrium position, so \(u(0) = 0\), and it has initial velocity \(u'(0) = 10\text{cm/s}\).