2.5-Continuity

Definitions: A function \(f \) is *continuous at \(x = a \) if and only if*

- \(f \) is continuous from the left at \(x = a \) if and only if
- \(f \) is continuous from the right at \(x = a \) if and only if
- \(f \) is continuous on the interval \([a, b]\) if and only if

Definition: \(f \) has a *removable discontinuity at \(x = a \) if and only if*

Theorems:

If \(\lim_{x \to a} g(x) = b \) and \(f \) is continuous at \(b \), then

Intermediate Value Theorem-

Examples:

Find the values of \(x \) for which \(f(x) = \frac{x^2 - 9}{x^2 - 5x + 6} \) is not continuous. Determine which, if any, of these discontinuities are removable.
Determine whether the function

\[f(x) = \begin{cases}
2x - 3 & \text{if } x \leq 2 \\
2x^2 & \text{if } x > 2
\end{cases} \]

is continuous at \(x = 2 \) or not and why. Sketch the graph of the function.

\[
\lim_{x \to 1} \left| \frac{x^2 + 2x - 3}{x^2 - 1} \right|
\]
Find the value of k that makes

$$f(x) = \begin{cases}
kx^2 & \text{if } x \leq 3 \\
2x + k & \text{if } x > 3
\end{cases}$$

continuous at $x = 3$.

Prove that there is at least one real solution to the equation $x^4 + x = 5$. Find an interval of length 1 which contains a solution.

On Your Own: 2.5 #1,2,12-18,29,31-34,37-39,42,43,47