3.11-Linear Approximation and Differentials

Purpose: To understand differentials and linear approximations to a function near a certain point.

Definitions: Given \(y = f(x) \), the differential \(dx \) represents an independent quantity (a small change in \(x \)). Then the differential \(dy \) is given by:

Seemingly Unrelated Topic: Recall graphing \(y = \sin x \). What happened as you zoom in on the point corresponding to \(x = 0 \)?

Idea: The tangent line approximates the curve \(y = f(x) \) near \(x = a \).

What is the equation of the line tangent to \(y = f(x) \) at the point where \(x = a \)?

Definition: The *Linear Approximation* (or *Linearization*) of \(f \) at \(x = a \) is

The Connection:

Examples:

Given \(y = \sqrt{x} \), find \(\Delta y \) and \(dy \) if \(x = 4 \) and \(\Delta x = dx = 1 \).
Use differentials to approximate $\cos 62^\circ$

Find the linear approximation of $f(x) = \sqrt{x}$ at $x = \frac{9}{4}$ and use it to approximate $\sqrt{2}$.

The circumference around the middle of a sphere is measured to be 40 cm, with a possible error of ± 1 cm. Use differentials to estimate the possible error in the volume of the sphere.

On Your Own: 3.11 #7,10,11,12,14,19,25-30,31,33