4.2-Inverse Functions and Their Derivatives

Definitions:

\(f \) is a one-to-one function if and only if

If \(f \) is one-to-one, the inverse of \(f \) is a function \(f^{-1} \) such that

If \((a, b)\) is on the graph of \(y = f(x) \), then

If \(f \) is one-to-one and differentiable at \(x = g(a) \) and \(g = f^{-1} \), then

_examples:

Find the inverse of \(f(x) = \sqrt{3x - 2} \)
Given \(f(x) = \frac{3-x}{1-x} \), find \(f^{-1} \)

Given \(g(x) \) is the inverse of \(f(x) = x + x^2 + e^x \), find \(g'(1) \)

The function \(f(x) = \tan x \) is one-to-one on the interval \((-\frac{\pi}{2}, \frac{\pi}{2})\). If \(g = f^{-1} \), find \(g'(1) \).

On Your Own: 4.2 #11,12,14,17,21,25,29,30,40