5.1-What Does f' say about f?

Read Section 5.1 in the text and complete the following on your own:

- If $f'(x) > 0$ for all $x \in (a, b)$, then f is **increasing on** (a, b)

- If $f'(x) < 0$ for all $x \in (a, b)$, then f is **decreasing on** (a, b)

- Concavity: $f''(x) > 0$ (up)
- Concave up on (a, b) ($f''(x) > 0$)
- Concave down on (a, b) ($f''(x) < 0$)

Example:

Sketch the graph of a function whose slope is always negative and increasing.

ONE EXAMPLE

$f(x) = e^{-x}$

- **$f'(x) = -e^{-x}$ always neg**
- **$f''(x) = e^{-x}$ always pos**
- So f' inc
Sketch the graph of a function which satisfies the following:

\[f(2) = 1 \quad (2,1) \]
\[f'(x) < 0 \text{ for } x < 2 \]
\[f'(x) > 0 \text{ for } x > 2 \]
\[f''(x) < 0 \text{ for all } x \]

Basic idea:

\[++ \quad \text{or} \quad \text{or} \]
\[+ \quad - \\ \text{or} \quad \text{or} \]
Give the x-coordinate(s) of all inflection point(s) of f.

max/min of f' (change from inc to dec or dec to inc)

The numbers appearing in your answers must be chosen from the following list:

-10.00, -3.01, -1.32, .46, 2.04, 2.98, 3.95, 5.04, 6.59, 8.01, 10.00

Enter Your Answer:

Learn to identify the properties of a function, its derivative and its second derivative from the graph of the second derivative.
This is the graph of the derivative of f. Questions will appear in a separate window.

Which of these graphs is f? Click below the Plot.

- Plot #1
- Plot #2
- Plot #3
This is the graph of the derivative of f. Questions will appear in a separate window.

To get started, click on Ask Question (below).

Which of these graphs is f''? Click below the Plot.
This is the graph of the derivative of \(f \). Questions will appear in a separate window.

To get started, click on Ask Question (below).

Which of these graphs is \(f'' \)? Click below the Plot.