1 3.1: The Derivative

Now that we can find the slope of the line tangent to a curve at any point (provided the limit of the slope exists), we can talk about a new function based on this calculation.

Definition: The derivative function of a function f (or the derivative of f) is a function defined by

$$f'(x) =$$

When is f not differentiable? (i.e., when does $f'(x)$ not exist or when is x not in the domain of f''?
Examples:

Let \(f(x) = \frac{8}{x + 2} \). Find \(f'(x) \) and use it to determine the slope of the line tangent to \(f \) at the point where \(x = 0 \), \(x = 2 \) and \(x = -1 \).

A clock has a radius of 10 cm. Let \(f(t) \) be the horizontal position of the tip of the second hand (where \(f(t) = 0 \) refers to the diameter through the 12 and 6). Sketch a rough graph of \(f(t) \), then sketch the graph of \(f'(t) \).
On Your Own: Determine whether \(f(x) = |x^2 - 9| \) is differentiable at \(x = 3 \).

No; left hand limit = \(-6\); right hand limit = 6.