1 3.6: Implicit Differentiation

The equation \(F(x, y) = 0 \) implicitly defines a relation (not necessarily a function) between \(y \) and \(x \). The graph of \(F(x, y) = 0 \) is the set of all points \((x, y)\) such that the equation holds (\(\{(x, y) | F(x, y) = 0\} \)). Given a graph of an implicitly-defined relation, we can still talk about the slope of the line tangent to the curve at the given point.

Method for Implicit Differentiation:

1. Done when \(y \) is not explicitly defined as a function of \(x \).
2. Differentiate both sides of the equation, remembering that \(y \) depends on \(x \) (you can call it \(y(x) \) if that helps)
3. Solve for \(y'(x) \) or \(\frac{dy}{dx} \).

Examples:

Find \(\frac{dy}{dx} \) if \(y^2 + 3x^2y^2 + 5x^4 = 12 \).

Find the equation of the line tangent to \(x^2 + xy + y^2 = 7 \) at the point \((1, -3)\).
Show that the curves $y = 3x^2$ and $x^2 + 2y^2 = 19$ are orthogonal.

(On your own): The equations $y = mx$ and $x^2 + y^2 = r^2$ represent families of curves for different constants r and m. Show that these families of curves are orthogonal (for all values of the constants).

(Slopes are $\frac{y}{x}$ and $-\frac{x}{y}$ which are negative reciprocals.)