1 5.1: Graphical Interpretation of \(f, f', \) and \(f'' \)

Graphical Interpretations of \(f' \):

If \(f'(x) > 0 \) for all \(x \in (a, b) \) then \(f \) is

If \(f'(x) < 0 \) for all \(x \in (a, b) \) then \(f \) is

Example: Draw a function \(f \) from \((1,0)\) to \((4,5)\) with \(f' > 0 \):

Definitions:

a differentiable function \(f \) is **concave up** on an interval \((a, b)\) if and only if

a differentiable function \(f \) is **concave down** on an interval \((a, b)\) if and only if

Therefore...

If \(f''(x) > 0 \) for all \(x \in (a, b) \), then

If \(f''(x) < 0 \) for all \(x \in (a, b) \), then
On Beyond Average: Sketch the graph of a continuous function which satisfies the following:

- \(f'(x) < 0 \) for \(x \in (-1, 1) \)
- \(f'(x) > 0 \) for \(x \in (-\infty, -1) \cup (1, \infty) \)
- \(f(-1) = 4, f(1) = 0 \)
- \(f''(x) < 0 \) for all \(x \neq 1 \)