5.2: Maxima and Minima

Definitions:

f has a relative maximum at $x = a$ if and only if $f(a) > f(x)$ for all x "near" a.

f has a relative minimum at $x = a$ if and only if $f(a) < f(x)$ for all x "near" a.

Fermat’s Theorem: If f has a relative maximum or relative minimum at $x = a$ and f is differentiable at $x = a$, then $f'(a) = 0$.

Note: $f'(a) = 0$ does NOT guarantee a rel max/min. For $f(x) = x^3$, $f'(0) = 3(0) = 0$ but no rel max or min.
More Definitions:

\(f \) has a **critical value** at \(x = a \) if and only if
\[f'(a) = 0 \text{ or } f'(a) \text{ DNE} \]

\(f \) has an **absolute maximum** at \(x = a \) if and only if
\[f(a) \geq f(x) \text{ for all } x \]

in the domain (general or restricted)

\(f \) has an **absolute minimum** at \(x = a \) if and only if
\[f(a) \leq f(x) \text{ for all } x \]

in the domain (general or restricted)

Extreme Value Theorem If \(f \) is continuous on a closed, bounded interval, then

\(f \) is guaranteed to attain its absolute maximum and absolute minimum on the interval.

Graphical examples to show that each of the conditions must hold to guarantee the conclusion:

- **Case 1:** \(f \) not continuous
 - No absolute max
 - \(\text{abs min} = 0 \text{ at } x = b \)

- **Case 2:** \(f \) continuous, not closed interval
 - \(\text{abs max} = 4 \text{ at Critical Value} \)
 - \(\text{No abs min} \)
Examples:

Find the absolute maximum and absolute minimum of \(f(x) = 4x^3 - 15x^2 + 12x + 7 \) on the interval \(0 \leq x \leq 3 \).

Critical Values:

\[
\begin{align*}
\text{Critical Values:} & \quad f'(x) = 12x^2 - 30x + 12 = 0 \\
& \quad 6(2x^2 - 5x + 2) = 0 \\
& \quad 6(2x-1)(x-2) = 0
\end{align*}
\]

Closed bounded interval

Candidates:

\[
\begin{align*}
f\left(\frac{1}{2}\right) &= \frac{39}{4} = 9.75 \\
f(2) &= 3 \\
f(0) &= 7 \\
f(3) &= 16
\end{align*}
\]

Abs max is 16 when \(x = 3 \)

Abs min is 3 when \(x = 2 \)
Warm Up

Find the absolute maximum and absolute minimum of \(f(x) = \frac{\ln x}{x^2} \) on the interval \((0, 3)\).

Critical Values:

\[f'(x) = \frac{x^2 \left(\frac{1}{x} \right) - \ln x \cdot (2x)}{x^4} = 0 \]

\[\frac{x - 2x \ln x}{x^4} = 0 \]

\[x \left(1 - 2 \ln x \right) = 0 \]

1. \(2 \ln x = 0\)
2. \(-2 \ln x = -1\)

\[\frac{\ln x}{x^4} = \frac{1}{e^2} \quad \text{for} \quad x = e^{\frac{1}{2}} \]

\(f \) has rel max at \(x = e^{\frac{1}{2}} \)

and \(f \) has abs max at \(x = e^{\frac{1}{2}} \) (since only one change of direction)

Abs max = \(f \left(e^{\frac{1}{2}} \right) = \frac{\ln e^{\frac{1}{2}}}{\left(e^{\frac{1}{2}} \right)^2} = \frac{1}{2e} \)

No abs min

\[f(0) = \frac{1 - 2 \ln 1}{1^3} > 0 \quad f(3) = \frac{1 - 2 \ln 3}{3^3} < 0 \]
On Beyond Average: Suppose f is differentiable for all x, and that f has exactly one critical value at $x = 1$. Find all the critical values of $h(x) = f(x^2)$.