1 3.11: Linear and Quadratic Approximation

Purpose: To understand Linear (Differential) and Quadratic Approximation to a function near a certain point.

Recall: Given \(y = f(x) \), the tangent line at \(x = a \) is the best approximation to the graph of \(f \) “near” \(x = a \).

Why?

Formula for the tangent line:

\[
L(x) = f(a) + f'(a)(x - a)
\]

Therefore, if we want to approximate values of \(f \) near a given \(x \)-value \((a) \), we can use the tangent line to obtain these approximations.

Example:

Use the linear approximation at \(x = \frac{27}{8} \) of an appropriate function to estimate \(\sqrt{3} \).

A different view: Because of the Linear Approximation, for values of \(x \) “near” \(x = a \), we have

\[
f(x) \approx L(x) = f(a) + f'(a)(x - a)
\]
Examples

The circumference around the middle of a sphere is measured to be 40cm, with a possible error of ±1 cm. Use differentials to estimate the possible error in the volume of the sphere.

Quadratic Approximation:

On Beyond Average: Given that the linear approximation to \(f \) at \(x = 2 \) is \(L(x) = \frac{3}{2} - \frac{5}{2}x \), what are \(f(2) \) and \(f'(2) \)?