Warm-Up

Given the graph of the DERIVATIVE of f at left, on which interval is f increasing?

(a) $[-2, 4]$ only
(b) $(-\infty, -2] \cup [4, \infty)$
(c) None of these
(d) $(-\infty, 1]$ only
(e) $(-\infty, -4] \cup [1, 7]$
1 5.1: Graphical Interpretation of f, f', and f''

Graphical Interpretations of f':
- If $f'(x) > 0$ for all $x \in (a, b)$ then f is increasing for all $x \in (a, b)$
- If $f'(x) < 0$ for all $x \in (a, b)$ then f is decreasing for all $x \in (a, b)$

Example: Draw a function f from $(1,0)$ to $(4,5)$ with $f' > 0$:

![Graphs of function f with different concavities]
Definitions:

a differentiable function f is **concave up** on an interval (a, b) if and only if f' increasing on (a, b)

a differentiable function f is **concave down** on an interval (a, b) if and only if f' decreasing on (a, b)

Therefore...

If $f''(x) > 0$ for all $x \in (a, b)$, then f' inc and f conc up for all $x \in (a, b)$

If $f''(x) < 0$ for all $x \in (a, b)$, then f' dec and f conc down for all $x \in (a, b)$

If $f''(x) = 0$ at $x = c$, then f MAY change concavity at $x = c$ and, if so, $(c, f(c))$ is called an **inflection point**.
Example: PROPERTIES OF THE GRAPH Maplet

The numbers appearing in your answers must be chosen from the following list:
-10, 0.0, -0.05, 0.1, -1.92, -1.90, 1.03, 2.00, 4.42, 6.85, 9.00, 10.00

On what interval(s) is f increasing?

On what interval(s) is f concave up?

Which of these graphs is f? Click below the Plot.

Which of these graphs is f''? Click below the Plot.
On Beyond Average: Sketch the graph of a continuous function which satisfies the following:

- $f'(x) < 0$ for $x \in (-1, 1)$
- $f''(x) > 0$ for $x \in (-\infty, -1) \cup (1, \infty)$
- $f(-1) = 4$, $f(1) = 0$
- $f''(x) < 0$ for all $x \neq 1$