6.3: The Definite Integral

Note that, although we assumed \(f \) was positive to illustrate the approximating rectangles, the definition can still be calculated even if \(f \) is not always positive.

The Definite Integral of \(f \) from \(x = a \) to \(x = b \) is given by

If \(f > 0 \), \(\int_a^b f(x) \, dx \) gives us the area under the graph of \(f \) from \(x = a \) to \(x = b \).

Equally Spaced Partitions: Let \(n \) be the number of equally-spaced subintervals of \([a, b]\).

Then \(\Delta x_i = \)

and \(\int_a^b f(x) \, dx = \)

Properties of Definite Integrals (pp 383-385)

(NOTE: Some of the more useful properties for future sections are #2, 3, 5, and 8)
Given \(f(x) = x^2 - 3x + 1 \), find the exact value of \(\int_1^3 f(x) \, dx \) from the definition.
Rewrite $\int_{-2}^{5} f(x) \, dx - \int_{3}^{5} f(x) \, dx + \int_{3}^{7} f(x) \, dx$ as a single integral.

On Beyond Average: Compute $\int_{0}^{4} \left(|x - 3| + \sqrt{16 - x^2} \right) \, dx$

(HINT: Use properties to split up, then remember that integral = area since both functions are positive on $[0, 4]$)