11.3: Torque and Cross-Product

Definitions: The torque of a vector \mathbf{F} about a vector \mathbf{r}

The cross-product of vectors \mathbf{a} and \mathbf{b}:

Note that $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}: If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, and $\mathbf{a} \times \mathbf{b} = \langle x_1, x_2, x_3 \rangle$, then we have:

The cross-product of vectors \mathbf{a} and \mathbf{b} (ONLY in \mathbb{R}^3) is given by $\mathbf{a} \times \mathbf{b} =$
NOTES:

1. Simple calculation method:

2. Geometric significance:

3. $|\mathbf{a} \times \mathbf{b}| =$

4. Useful Properties (all listed on p668):

Examples:

Find $\mathbf{a} \times \mathbf{b}$ if $\mathbf{a} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} - \mathbf{j} + 7\mathbf{k}$
Given the points $P(1,0,−1)$, $Q(2,4,5)$, and $R(3,1,7)$ find a vector orthogonal to the plane containing these points.

Find the area of $\triangle PQR$.
Find the volume of the parallelepiped whose corner is formed by the vectors \(\mathbf{a} = \langle 2, 3, -2 \rangle \), \(\mathbf{b} = \langle 1, -1, 0 \rangle \), and \(\mathbf{c} = \langle 2, 0, 3 \rangle \).

A wrench 0.5m long is applied to a nut with a force of 80N (See picture below). Because of limited space, the force must be exerted straight upward. How much torque is applied to the nut?