1 10.2: Series

Definitions:

Infinite Series:

\[\sum_{n=1}^{\infty} a_n \]

Nth Partial Sum:

Convergent Series:

Divergent Series:

Special (Summable) Kinds of Series:

Geometric Series:

Find the values of \(r \) for which \(\sum_{n=1}^{\infty} a r^{n-1} \) is convergent and find the sum.
Telescoping Series:

Find the sum of \(\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+2} \right) \)

Properties of Convergent Series:

If \(\sum_{n=0}^{\infty} a_n \) and \(\sum_{n=0}^{\infty} b_n \) are convergent, then:

i)

ii)

iii)
Tests for Convergence of Series: (continued through 10.4)

I. The Test for Divergence (or Divergence Test):

\[\sum_{n=0}^{\infty} \frac{n + 3}{2n + 1} \]

(A DIFFERENT LOOK): Suppose \(s_N = \sum_{n=0}^{N} a_n = \frac{N + 3}{2N + 1} \). What do we know about \(\sum_{n=0}^{\infty} a_n \)?

Prove the converse of the Test for Divergence is false by showing that \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges.