1 10.2: Series

Definitions:

Infinite Series:

Nth Partial Sum:

Convergent Series:

Divergent Series:

Special (Summable) Kinds of Series:

Geometric Series:

Find the values of \(r \) for which \(\sum_{n=1}^{\infty} ar^{n-1} \) is convergent and find the sum.
Telescoping Series:

Find the sum of \(\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+3} \right) \)

Properties of Convergent Series:

If \(\sum_{n=0}^{\infty} a_n \) and \(\sum_{n=0}^{\infty} b_n \) are convergent, then:

i) ii) iii)
Tests for Convergence of Series: (continued through 10.4)

I. The Test for Divergence (or Divergence Test):

\[\sum_{n=1}^{\infty} \frac{\sqrt{n-1}}{n} \]

(A DIFFERENT LOOK): Suppose \(s_N = \sum_{n=1}^{N} a_n = \sqrt{\frac{N-1}{N}} \). What do we know about \(\sum_{n=1}^{\infty} a_n \)?

A proof that the converse of the Test for Divergence is false: \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges even though the terms \(\left(\frac{1}{n} \right) \) approach 0.