1 7.2: Volume by Slicing

The volume of a prism with a base of area \(B \) and a height \(h \) is given by

If the height is not constant, we can, in many cases, “slice” the solid thin enough that the height is constant.

Examples: Derive (prove) the formula for the volume of a hemisphere with radius \(r \).

Find the volume of the solid formed by rotating the region bounded by the curves \(y = \sqrt{x - 1}, \ y = 0, \) and \(x = 3 \) about the \(x \)-axis.
Find the volume of the solid formed by rotating the region on the previous page about the y-axis.

Find the volume of the solid formed by rotating the region bounded by the curves $y = \cos x$, $y = \sin x$, $x = 0$, and $x = \frac{\pi}{4}$ about the x-axis.
Set up, but do not evaluate, an integral to find the volume of the solid formed by rotating the region bounded by \(y = \ln x \), \(y = 0 \), and \(x = e^2 \) about the line \(x = -1 \).

The base of a solid is the region bounded by \(y = x^2 \) and \(y = 2 - x^2 \). Cross-sections perpendicular to the \(x \)-axis are squares. Find the volume of the solid.