1 10.1: Sequences

Definitions:

sequence \(\{a_n\} \):

\[
\lim_{n \to \infty} a_n = L
\]

Sequences defined using real-valued functions:

Limit Laws: Given \(a_n \) and \(b_n \) converge and \(c \) is a constant, then:

1. \[
\lim_{n \to \infty} (a_n + b_n) =
\]
2. \[
\lim_{n \to \infty} (a_n - b_n) =
\]
3. \[
\lim_{n \to \infty} ca_n =
\]
4. \[
\lim_{n \to \infty} a_nb_n =
\]
5. \[
\lim_{n \to \infty} \frac{a_n}{b_n} =
\]
6. If \(\lim_{n \to \infty} |a_n| = 0 \), then
7. If \(f \) is a continuous function and \(a_n \to L \), then
8. **Squeeze Theorem**:

Examples: Find the limits of the following sequences:

a) \(a_n = \frac{\ln(n + e^{3n})}{n} \)
b) $a_n = \arctan \left(\frac{n}{n+1} \right)$

c) $a_n = \frac{(-1)^{n+1}}{2n+1}$

More Definitions:

Monotonic sequence:

$\{a_n\}$ is increasing for $n \geq N$ if and only if

implies: (1) $a_{n+1} - a_n > 0$;
(2) $\frac{a_{n+1}}{a_n} > 1$ if $a_n > 0$;
(3) If $a_n = f(n)$ for some real-valued function f, then $f' > 0$.

$\{a_n\}$ is decreasing for $n \geq N$ if and only if

implies:

$\{a_n\}$ is bounded above (below) if and only if

Monotone Sequence Theorem:
On Beyond Average:

Find the limit of \(a_n = (\sqrt{n + 1} - \sqrt{n})\sqrt{n + \frac{1}{2}} \)

Given \(a_n = \frac{1000^n}{n!} \), show \(a_n \) is decreasing (for \(n > \)some \(N \)) and bounded below. What is the limit of this sequence, and why?
Proof by Induction (Appendix E)

Example:

Given $a_0 = 1$ and $a_{n+1} = \frac{1}{3}a_n + 1$:

a) Show a_n is increasing and $0 < a_n < 2$ for all n.

b) Find $\lim_{n \to \infty} a_n$.