1 9.3: Arclength

Goal: Given a curve, find the length of the curve between two points.

Informal Derivation of Method:

Examples: Find the length of the curve $y = x^{2/3}$ from $x = 1$ to $x = 8$.

Method I:

Method II: .
Find the length of the curve parametrized by \(x = \frac{1}{2}t^2 - t, \ y = \frac{4}{3}t^{3/2}, \ t \in [0, 2]. \)

On Beyond Average:

Find the length of the curve parametrized by \(x = 1 + e^{-t} \cos t, \ y = e^{-t} \sin t, \ t \in [0, \infty). \)

Find the length of the astroid \(x = \cos^3 \theta, \ y = \sin^3 \theta. \)