1 10.1: Sequences

Definitions:

sequence \(\{a_n\} \):

\[
\lim_{n \to \infty} a_n = L
\]

Sequences defined using real-valued functions:

Limit Laws: Given \(a_n \) and \(b_n \) converge and \(c \) is a constant, then:

1. \(\lim_{n \to \infty} (a_n + b_n) = \)
2. \(\lim_{n \to \infty} (a_n - b_n) = \)
3. \(\lim_{n \to \infty} ca_n = \)
4. \(\lim_{n \to \infty} a_nb_n = \)
5. \(\lim_{n \to \infty} \frac{a_n}{b_n} = \)
6. If \(\lim_{n \to \infty} |a_n| = 0 \), then
7. If \(f \) is a continuous function and \(a_n \to L \), then
8. **Squeeze Theorem**:

Examples: Find the limits of the following sequences:

a) \(a_n = \frac{\ln(5 + e^n)}{5n} \)
b) \(a_n = \arctan \left(\frac{n}{n+1} \right) \)

c) \(a_n = \frac{(-1)^{n+1}}{2n+1} \)

More Definitions:

Monotonic sequence:

\(\{a_n\} \) is increasing for \(n \geq N \) if and only if

implies:

1. \(a_{n+1} - a_n > 0 \);
2. \(\frac{a_{n+1}}{a_n} > 1 \) if \(a_n > 0 \);
3. If \(a_n = f(n) \) for some real-valued function \(f \), then \(f' > 0 \).

\(\{a_n\} \) is decreasing for \(n \geq N \) if and only if

implies:

\(\{a_n\} \) is bounded above (below) if and only if

Monotone Sequence Theorem:
On Beyond Average:

Find the limit of \(a_n = (\sqrt{n+1} - \sqrt{n})\sqrt[n]{n + \frac{1}{2}} \)

Given \(a_n = \frac{1000^n}{n!} \), show \(a_n \) is decreasing (for \(n > \text{some } N \)) and bounded below. What is the limit of this sequence, and why?
Example:

Given \(a_0 = 1 \) and \(a_{n+1} = \frac{1}{3}a_n + 1 \):

a) Show \(a_n \) is increasing and \(0 < a_n < 2 \) for all \(n \).

b) Find \(\lim_{n \to \infty} a_n \).