10.9: Error Analysis in Taylor Polynomials

Recall: We can find the Taylor series of any differentiable function \(f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n \) where \(c_n = \)

However, this is not very practical. It is true, however, that we can approximate the function with a finite polynomial by looking at partial sums.

Recall: The \(N \)th degree Taylor polynomial of \(f \) at \(x = a \):

The **Remainder** of the \(N \)th degree Taylor polynomial is given by
\(R_N(x) = \)

The question, then, is how large a polynomial is necessary to achieve a desired accuracy for the function on a given interval? That is, how far off are we at most at any point on a given interval when we stop the series at a given value of \(N \)?

Recall that if the series is an Alternating Series, then \(|R_N(x)| \leq \)

Also recall Taylor’s Inequality:

Graphical analysis of the error is another method which will be done in Matlab.
Examples:

Use a 3rd degree Taylor polynomial at $a = 0$ to approximate e^x on the interval $[-1, 1]$ (which can then be used to approximate e) and determine the accuracy of your results using the remainder theorem.

Using the fact that $\ln(1+t) = t - \frac{1}{2}t^2 + \frac{1}{3}t^3 - \cdots$, find the 4th degree Taylor polynomial approximation at $a = 0$ for $\ln(1 + x^2)$. Using this, estimate $\int_0^{1/2} \ln(1 + x^2) \, dx$. Estimate the error in using this approximation.
On Beyond Average:

Determine the degree of the Taylor Polynomial needed to approximate \[\int_0^{0.1} \sin(x^2) \, dx \] to within 10^{-10} accuracy. (Calc required)

In Einstein’s special theory of relativity, the relativistic generalization of the kinetic energy of an object is given by

\[
K = mc^2 \left(\left(1 - \frac{v^2}{c^2} \right)^{-1/2} - 1 \right)
\]

Here \(m \) is the object’s mass, \(c \) is the speed of light, and \(v \) is the speed of the object. Show that, for everyday speeds (i.e., whenever \(v \) is VERY MUCH LESS than \(c \)), the above expression reduces to the classical kinetic energy of Newtonian theory, \(K = \frac{1}{2} mv^2 \):

(a) Compute the first 3 terms of the Maclaurin series for \(f(x) = (1 + x)^{-1/2} \)

(b) Substitute \(x = -\frac{v^2}{c^2} \) into (a) to get an approximate series for \(\left(1 - \frac{v^2}{c^2} \right)^{-1/2} \)

(c) Substitute (b) into the original expression