9. Let \(f(x) \) be the function whose Taylor series at 3 is
\[
f(x) = \sum_{n=1}^{\infty} \frac{1 + \sqrt{n}}{(n+1)!} (x-3)^n.
\]
Find \(f^{(16)}(3) \), i.e., find the 16-th derivative of \(f \) at 3.

(a) \(\frac{5}{17!} \)
(b) \(\frac{5}{16!} \)
(c) \(\frac{5}{17} \)
(d) 5
(e) \(5(3)^{16} \)
10.9: Error Analysis in Taylor Polynomials

Recall: We can find the Taylor series of any differentiable function \(f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \) where

\[
 c_n = \frac{f^{(n)}(a)}{n!}
\]

\[
 f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n
\]

However, this is not very practical. It is true, however, that we can approximate the function with a finite polynomial by looking at partial sums.

Recall: The \(N \)th degree Taylor polynomial of \(f \) at \(x = a \):

\[
 T_N(x) = \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} (x-a)^n
\]

\[
 f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots
\]

Quadratic Approximation

Linear Approx

The **Remainder** of the \(N \)th degree Taylor polynomial is given by

\[
 R_N(x) = \sum_{n=N+1}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n
\]

\[
 = f(x) - T_N(x)
\]

\[
 S - S_N
\]
The question, then, is how large a polynomial is necessary to achieve a desired accuracy for the function on a given interval? That is, how far off are we at most at any point on a given interval when we stop the series at a given value of N?

Recall that if the series is an Alternating Series, then $|R_N(x)| \leq b_{N+1} = \frac{f^{N+1}(a)}{(N+1)!} |x-a|^{N+1}$

Also recall Taylor's Inequality: if $|f^{N+1}(x)| \leq M$ on an interval, then $|R_N(x)| \leq \frac{M}{(N+1)!} |x-a|^{N+1}$ (Given on exam)

Graphical analysis of the error is another method which will be done in Matlab.
Examples:

Use a 3rd degree Taylor polynomial at \(a = 0 \) to approximate \(e^x \) on the interval \([-1, 1]\) (which can then be used to approximate \(e \)) and determine the accuracy of your results using the remainder theorem.

We know

\[
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}
\]

\[
T_3(x) = \frac{x^3}{3!} + \frac{x^2}{2} + x + 1
\]

\[
|R_n(x)| \leq \frac{M}{(N+1)!} |x-a|^{N+1}
\]

\[N = 3, a = 0\]

\[M \text{ upper bound on } 4^{th} \text{ deriv}\]

\[
|R_n(x)| \leq \frac{3}{4!} |x|^4
\]

\[\text{on } [-1,1]\]

\[\leq \frac{3}{4!} (1)^4 = \frac{1}{8}\]

\[M = e < 3\]

\[\text{Graph of } |R_3(x)|\]

\[
|R_3(x)| \leq 0.06 < \frac{1}{8}
\]
Using the fact that $\ln(1+t) \approx 1 - \frac{1}{2}t^2 + \frac{1}{3}t^3 - \cdots$, find the 4th degree Taylor polynomial approximation at $a = 0$ for $\ln(1 + x^2)$. Using this, estimate $\int_0^{1/2} \ln(1 + x^2) \, dx$. Estimate the error in using this approximation.

\[
\ln(1 + t) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} t^n
\]

\[
\ln(1 + x^2) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{2n}
\]

\[
T_4(x) = \sum_{n=0}^{3} \frac{(-1)^{n-1}}{n} x^{2n} = \boxed{x^2 - \frac{1}{2}x^4}
\]

\[
\int_0^{1/2} \ln(1 + x^2) \, dx \approx \int_0^{1/2} \left(x^2 - \frac{1}{2}x^4 \right) \, dx
\]

\[
= \left[\frac{1}{3} x^3 - \frac{1}{10} x^5 \right]_0^{1/2} = \frac{1}{48} - \frac{1}{320}
\]

Alt Series

\[
| r_4(x) | = | f(x) - T_4(x) | \leq b_3 = \frac{1}{3} |x|^{6} \quad \text{on} \quad [0, \frac{1}{2}]
\]

\[
S - S_2 \leq \frac{1}{3} \left(\frac{1}{2} \right)^6
\]
On Beyond Average:

Determine the degree of the Taylor Polynomial needed to approximate \(\int_0^{0.1} \sin(x^2) \, dx \) to within \(10^{-10} \) accuracy. (Calc required)

\[
\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}
\]

Replace \(x \) with \(x^2 \) (NOT squaring!)

\[
\sin(x^2) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+2}}{(4n+2)!}
\]

\[
\int_0^{0.1} \sin(x^2) \, dx = \sum_{n=0}^{\infty} \frac{(-1)^n (0.1)^{4n+2}}{(4n+2)(4n+3)!}
\]

Alternative Series

\[
|S - S_N| \leq b_{n+1} < 10^{-10}
\]

On Matlab:

\[
N \geq 1
\]

\[
\int_0^{0.1} \sin(x^2) \, dx \approx \frac{(0.1)^3}{3(1)!} - \frac{(0.1)^7}{7(3)!}
\]
In Einstein's special theory of relativity, the relativistic generalization of the kinetic energy of an object is given by

\[K = mc^2 \left(1 - \frac{v^2}{c^2} \right)^{-1/2} - 1 \]

Here \(m \) is the object's mass, \(c \) is the speed of light, and \(v \) is the speed of the object. Show that, for everyday speeds (i.e., whenever \(v \) is VERY MUCH LESS than \(c \)), the above expression reduces to the classical kinetic energy of Newtonian theory, \(K = \frac{1}{2}mv^2 \):

(a) Compute the first 3 terms of the Maclaurin series for \(f(x) = (1 + x)^{-1/2} \)

(b) Substitute \(x = -\frac{v^2}{c^2} \) into (a) to get an approximate series for \(\left(1 - \frac{v^2}{c^2} \right)^{-1/2} \)

(c) Substitute (b) into the original expression

\[
\begin{align*}
\text{a)} & \quad f(x) = (1+x)^{-1/2} \quad f(0) = 1 \quad T_2(x) = 1 - \frac{1}{2}x + \frac{3}{8}x^2 \\
& \quad f'(x) = -\frac{1}{2}(1+x)^{-3/2} \quad f'(0) = \frac{1}{2} \\
& \quad f''(x) = \frac{3}{4}(1+x)^{-5/2} \quad f''(0) = \frac{3}{4} \\
\text{b)} & \quad T_2\left(-\frac{v^2}{c^2}\right) = 1 - \frac{1}{2}\left(-\frac{v^2}{c^2}\right) + \frac{3}{8}\left(-\frac{v^2}{c^2}\right)^2 \\
& \quad = 1 + \frac{v^2}{2c^2} + \frac{3v^4}{8c^4} \\
\text{c)} & \quad K = mc^2 \left(1 - \left(1 - \frac{v^2}{c^2}\right)^{-1/2} \right) - 1 \\
& \quad = mc^2 \left(\frac{v^2}{2c^2} + \frac{3v^4}{8c^4} \right) \\
& \quad = m \left(\frac{v^2}{2} + \frac{3v^4}{8c^4} \right) \\
& \quad \text{so since } v \ll c, \quad K = \frac{1}{2}mv^2
\end{align*}
\]