Spring 2020 Math 152

Week in Review XIII

courtesy: David J. Manuel
(covering FInal Exam Review)

1. Compute each of the following integrals:
(a) $\int \frac{x-2}{x\left(x^{2}+1\right)} d x$
(b) $\int_{\sqrt{2}}^{2} \frac{1}{\sqrt{x^{2}-1}} d x$
(c) $\int \cos ^{3}(2 x) d x$
(d) $\int x \sin (2 x) d x$
(e) $\int_{0}^{\ln (3)} \frac{e^{x}}{\sqrt{e^{x}+1}} d x$
2. Compute $\int_{0}^{\infty}\left(\frac{2}{2 x+1}-\frac{1}{x+3}\right) d x$
3. Find the area of the region bounded by the graphs of $x=0, y=\frac{3}{2} \tan x$, and $y=\cos x$.
4. The region bounded by $y=4-x^{2}$ and $y=3$ is revolved around the line $x=2$. Write an integral to find the volume.
5. Find the volume of the solid whose base is the triangular region with vertices $(0,0),(3,0)$, and $(0,4)$ and whose cross-sections perpendicular to the x-axis are semicircles.
6. Consider a trough in the shape of a halfcylinder of radius 3 feet and length 8 feet (diameter at the top). It is full of water to a depth of 3 feet. Find an integral that gives the work necessary to pump all of the water to a point 1 foot above the top of the trough.
7. Write a power series for the function $f(x)=$ $\ln (1+2 x)$ centered at $x=0$.
8. Write a power series for the function $f(x)=$ e^{-x} centered at $x=1$.
9. Determine whether the following series converge or diverge. Name and apply an appropriate test and state all the conditions that must be satisfied.
(a) $\sum_{n=0}^{\infty} \frac{n^{2}}{\sqrt{n^{5}+10}}$
(b) $\sum_{n=2}^{\infty} \frac{\ln (n)}{n}$
10. Find the radius and interval of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt{n+7}}$.
11. Find the second degree Taylor polynomial for $f(x)=\sqrt{x}$ at $x=1$.
12. The curve parametrized by $x=3 t-t^{3}, y=$ $3 t^{2}, t \in[0,1]$ is rotated about the x-axis. Find the area of the surface formed.
13. Sketch the graph of the polar equation $r=$ $8+8 \sin (\theta)$.
