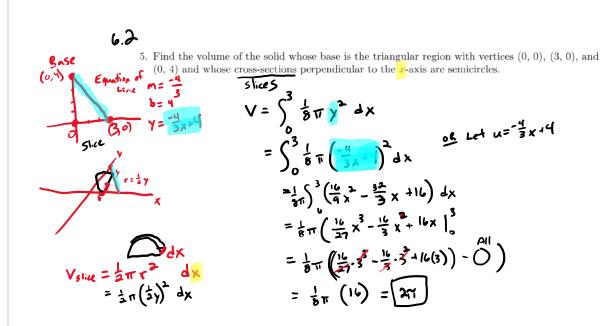

WIR 13 152

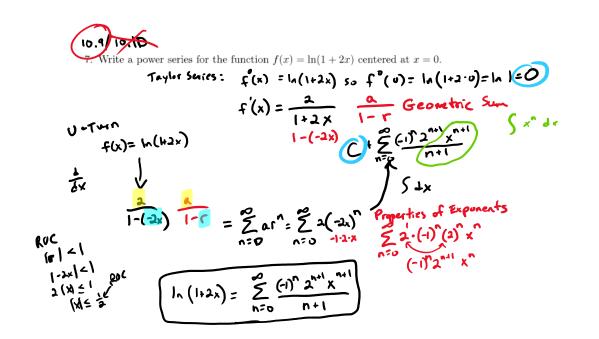

Monday, April 27, 2020 1:53 PM

$$\begin{split} \text{Partial Partial Partia Partial Partial Partial Partial Partial Partial Partial Partial$$

Proversion 7.2
(a) frometries (c)
$$\int \cos^{2}(2x) dx$$

(c) $\int \cos^{2}(2x) dx$
(c) $\int \sin^{2}(2x) dx$
(c) $\int \sin^{2}$

Multiplying unrelated 7.1
Let
$$u = x$$
 $dv = \sin(2x) dx$
 $dv = \sin(2x) dx$
 $du = 1 dx$ $v = \frac{1}{2}(\cos(2x))$
Parts $\int u dv = uv - \int v du$
 $\int x \sin(2x) = x(\frac{-1}{2}\cos(2x)) + \int \frac{1}{2}\cos(2x) \cdot dx$
 $= [-\frac{1}{2}x\cos(2x) + \frac{1}{2} \cdot \frac{1}{2}\sin(2x) + C]$



6.4

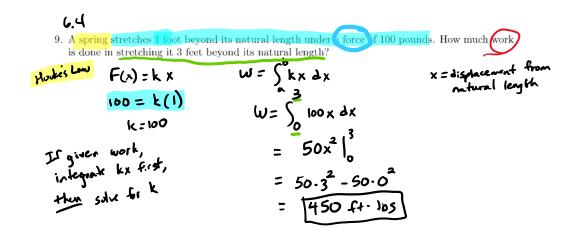
6. Consider a trough in the shape of a half-cylinder of radius 3 feet and length 8 feet (diameter at the top). It is full of water to a depth of 3 feet. Find an integral that gives the work necessary to pump all of the water to a point 1 foot above the top of the trough.

 $V = \int_{0}^{3} \frac{16\rho g \sqrt{9 - \gamma^{2}}(\gamma + 1)}{\int_{-\infty}^{0} \frac{16\rho g \sqrt{9 - \gamma^{2}}(1 - \gamma)}{\gamma} d\gamma}$ y is dist from by to slice halfnoy distance ourogs stee Vsice = 2x.8.dy weight = pg Vol = 16pg x dy Work = Weight · distance (y+1) $\mathbf{5}$

8. Write a power series for the function
$$f(x) = e^{-x}$$
 centered a $x = 1$

$$f_{(x)}^{(0)}(x) = e^{-x} \rightarrow f_{(1)}^{(0)}(1) = e^{-1} = (1)^{\circ} e^{-1}$$

$$f_{(x)}^{(0)}(x) = e^{-x} \rightarrow f_{(1)}^{(0)}(1) = e^{-1} = (1)^{\circ} e^{-1}$$


$$f_{(x)}^{(n)}(x) = (-1)(-1)e^{-x} \rightarrow f_{(1)}^{(1)}(1) = (-1)^{\circ} e^{-1}$$

$$f_{(x)}^{(n)}(x) = (-1)(-1)e^{-x} \rightarrow f_{(1)}^{(1)}(1) = (-1)^{\circ} e^{-1}$$

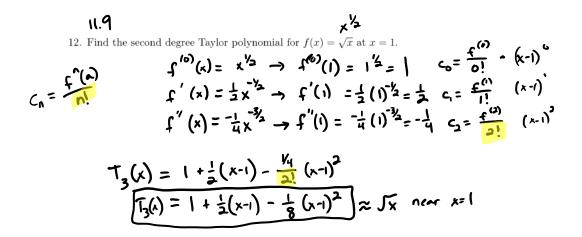
$$f_{(x)}^{(n)}(x) = (-1)(-1)e^{-x} \rightarrow f_{(1)}^{(1)}(1) = (-1)^{\circ} e^{-1}$$

$$f_{(x)}^{(n)}(1) = (-1)e^{-1} = (-1)e^{-1}$$

 $\mathbf{6}$

11.2-11.6

10. Determine whether the following series converge or diverge. Name and apply an appropriate test and state all the conditions that must be satisfied.


10.4 Retip of Powers -> LCT
$$2-\frac{5}{2}=\frac{1}{n}$$

(a) $\sum_{n=0}^{\infty} \frac{n^2}{n^5+10}$ Compare with $\sum_{n=1}^{\infty} \frac{n^2}{n^{\frac{5}{2}}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ Diverges by P-Tgst (p<1)
 $a_n = \frac{n^2}{\sqrt{n^5+10}} > 0$ $b_n = \frac{1}{n^{\frac{1}{2}}} > 0$
 $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2}{\sqrt{n^5+10}} \cdot \frac{n^{\frac{1}{2}}}{1}$
 $= \lim_{n \to \infty} \frac{n^{\frac{3}{2}}}{\sqrt{n^5+10}} \frac{n^{\frac{5}{2}}}{n^{\frac{5}{2}}} = 1$
Converges to 1
 \therefore both series do sue Hing
Diverges by LCT with $\sum \frac{1}{n^{\frac{1}{2}}}$

10.6
(b)
$$\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!}$$

(c) $\sum_{n=0}^{\infty} \frac{(n+1)^2}{(2n)!}$
(c) $\sum_{n=0}^{\infty} \frac{(n+1)}{(2n)!}$
(c) $\sum_{n=0}^{\infty} \frac{(n+1)}{(2n)!}$
(c) $\sum_{n=0}^{\infty} \frac{(n+1)!}{(2n+1)!}$
(c) $\sum_{n=0}^{\infty} \frac{(n+1)!}{(2n+2)!}$
(c) $\sum_{n=0}^{\infty} \frac{(n+1)!}{(2n+2)!$

8

10.3 Nothing else works -> try integral test
(c)
$$\sum_{n=2}^{\infty} \frac{\ln(n)}{n}$$
 $f(x) = \frac{\ln x}{x}$ f positive, decreasing, cts
lim $\int_{2}^{N} \frac{\ln x}{x} \frac{x \cdot au}{dx}$ $u = \ln x$
 $u = \ln x$
 $du = \frac{1}{x} dx$
 $dx = x \cdot du$
 $\frac{1}{N \cdot av} \int_{2}^{N} u du$
 $x = 2$
 $= \lim_{N \to 0} \frac{1}{2}u^{2} \int_{x=2}^{N} \frac{1}{x=2} \int_{x=2}^{\infty} \frac{1}{x=2}$

9

10