Spring 2020 Math 152

Week in Review X

courtesy: David J. Manuel
(covering 11.4, 11.5, and 11.6)

1 Section 11.4

1. Determine whether the following series are convergent or divergent. Explain why.
(a) $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{n}{(n+2)(n-3)}$
(c) $\sum_{n=1}^{\infty} \frac{n}{(n+2)(n+3)}$
(d) $\sum_{n=1}^{\infty} \frac{\sqrt{n+n^{2}}}{n+n^{3}}$

2 Section 11.5

1. Determine whether the following series are convergent or divergent. Explain why.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$
(b) $\sum_{n=1}^{\infty}(-1)^{n+1} 3 n^{2} e^{-n^{3}}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)}{n}$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(2+\cos n)}{n^{2}}$
2. How many terms of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3}}$
do you need to add to estimate the sum to

How many terms of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3}}$
do you need to add to estimate the sum to within an error of 10^{-6} ?

$$
0
$$

3 Section 11.6

1. For the convergent series in $\# 1$ of the previous section, determine which are absolutely convergent.
2. Determine if the following series are absolutely convergent, convergent (but not absolutely), or divergent:
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n}}{n!3^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 4^{n}}{n 3^{n}}$
3. Find the values of x for which the series $\sum_{n=2}^{\infty} \frac{(-3)^{n}(x-1)^{n}}{\sqrt{n}}$ converges.
