Spring 2020 Math 152

Week in Review XI

courtesy: David J. Manuel
(covering 11.8 and 11.9)

1 Section 11.8

1. Find the radius and interval of convergence for the following series:
(a) $\sum_{n=1}^{\infty} x^{n}$
(b) $\sum_{n=1}^{\infty} n!x^{n}$
(c) $\sum_{n=1}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}$
(d) $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{\sqrt{n+1} 6^{n}}$
(e) $\sum_{n=0}^{\infty} \frac{(3 x-2)^{n}}{n^{2}+4}$
2. If the series $\sum_{n=1}^{\infty} c_{n}(x-6)^{n}$ has radius of convergence $r=3$, find the values of x for which we know the series is convergent.
3. The radius of convergence of the series $\sum_{n=1}^{\infty} \frac{(-3)^{n}(x-1)^{n}}{\sqrt{n}}$ is $\frac{1}{3}$. Find the interval of convergence.

2 Section 11.9

1. Given $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, find a power series for $f^{\prime}(x)$ and $\int f(x) d x$. What is $f(x) ?$
2. Express the following functions as power series, and state the radius of convergence.
(a) $f(x)=\arctan x$
(b) $f(x)=\frac{x^{2}}{(1+x)^{2}}$
(c) $f(x)=\frac{x}{3-x}$
3. Find the sum of $\sum_{n=1}^{\infty} n x^{n}$.
4. If $g(x)=x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\cdots+\frac{1}{n} x^{n}+\cdots$, find $g\left(\frac{1}{2}\right)$
