Spring 2020 Math 152

Week 2 in Review

courtesy: David J. Manuel

(covering 5.5, 6.1, and 6.2)

(Problems with a * beside them will also be done in Python)

1 Section 5.5

1. Evaluate the following integrals:

(a)
$$\int_{0}^{2} \frac{dx}{(3x+2)^{2}}$$

(b) $\int \frac{\cos(\ln x)}{x} dx$
(c) $\int_{0}^{1} x e^{-x^{2}} dx^{*}$
(d) $\int_{0}^{\frac{1}{2} \ln 3} \frac{e^{x}}{e^{2x}+1} dx$
(e) $\int x^{3} \sqrt{x^{2}+1} dx$

2 Section 6.1

- 1. Find the area bounded by the graph of $y = 6x x^2$ and the line y = 2x
- 2. Find the area bounded by the graphs of $y = x^3 + 3x^2 4x$ and $y = 2x^2 + 4$.
- 3. Find the area bounded by the curves $y = \frac{6}{1+x^2}$ and $y = \frac{1}{2}x^2$. *
- 4. Find the area of the region bounded by x + 2y = 7 and $y^2 6y x = 0$.
- 5. Find the area in the first quadrant to the left of $y = \ln x$ and below y = 1.
- 6. Sketch a region whose area is represented by the integral $\int_{-2}^{\sqrt{2}} (\sqrt{4-x^2}-x) \, dx.$

3 Section 6.2

- 1. Find the volume of the solid formed by rotating the region above the x-axis (closest to the origin) bounded by the curves $y = \sin x$ and y = 0 about the x-axis.
- 2. Set up, but do not evaluate, an integral to find the volume of the solid formed by rotating the region bounded by $y = 2x^2 + 1$ and y = 3xabout the x-axis.*
- 3. Find the volume of the solid formed by rotating the region bounded by the curves $y = \sqrt{x}$, x = 0, and y = 2 about the y-axis.
- 4. Find the volume of the solid formed by rotating the region in the previous example about the line y = -1.
- 5. Find the volume of a square pyramid whose height is h and whose base is s by s.
- The base of a solid is the unit circle in the xy plane. Cross-sections perpendicular to the x-axis are equilateral triangles. Find the volume of the solid.