Spring 2020 Math 152

Week 2 in Review

courtesy: David J. Manuel

(covering 5.5, 6.1, and 6.2)
(Problems with a ${ }^{*}$ beside them will also be done in Python)

1 Section 5.5

1. Evaluate the following integrals:
(a) $\int_{0}^{2} \frac{d x}{(3 x+2)^{2}}$
(b) $\int \frac{\cos (\ln x)}{x} d x$
(c) $\int_{0}^{1} x e^{-x^{2}} d x^{*}$
(d) $\int_{0}^{\frac{1}{2} \ln 3} \frac{e^{x}}{e^{2 x}+1} d x$
(e) $\int x^{3} \sqrt{x^{2}+1} d x$

2 Section 6.1

1. Find the area bounded by the graph of $y=$ $6 x-x^{2}$ and the line $y=2 x$
2. Find the area bounded by the graphs of $y=$ $x^{3}+3 x^{2}-4 x$ and $y=2 x^{2}+4$.
3. Find the area bounded by the curves $y=$ $\frac{6}{1+x^{2}}$ and $y=\frac{1}{2} x^{2} . *$
4. Find the area of the region bounded by $x+$ $2 y=7$ and $y^{2}-6 y-x=0$.
5. Find the area in the first quadrant to the left of $y=\ln x$ and below $y=1$.
6. Sketch a region whose area is represented by the integral $\int_{-2}^{\sqrt{2}}\left(\sqrt{4-x^{2}}-x\right) d x$.

$3 \quad$ Section 6.2

1. Find the volume of the solid formed by rotating the region above the x-axis (closest to the origin) bounded by the curves $y=\sin x$ and $y=0$ about the x-axis.
2. Set up, but do not evaluate, an integral to find the volume of the solid formed by rotating the region bounded by $y=2 x^{2}+1$ and $y=3 x$ about the x-axis.*

3 . Find the volume of the solid formed by rotating the region bounded by the curves $y=$ $\sqrt{x}, x=0$, and $y=2$ about the y-axis.
4. Find the volume of the solid formed by rotating the region in the previous example about the line $y=-1$.
5. Find the volume of a square pyramid whose height is h and whose base is s by s.
6. The base of a solid is the unit circle in the x y plane. Cross-sections perpendicular to the x-axis are equilateral triangles. Find the volume of the solid.

