WIR10 152 Monday, April 6, 2020 5:37 PM

> MATH 152-Spring 2020 Week in Review X

TEXAS A&M UNIVERSITY Math Learning Center

Determine whether the following series are convergent. or divergent. Explain why. (a) $\sum_{n=1}^{\infty} \frac{\sin\left(\frac{1}{n}\right)}{n^2}$ for $n \ge 1$, $0 \le \sin\left(\frac{1}{n}\right) \le 1$ in $n \ge 1$

We know
$$\Sigma$$
 to converges by P-test (Σ to converge if $\rho > 1$)
 $\therefore \sum_{n=1}^{\infty} \frac{\sin(2n)}{n^2}$ converges by Compari and to Σ to Σ

$$\int_{n=0}^{\infty} \left(\frac{n}{n^{2} + 2(n^{-3})} \right) \int_{n=0}^{\infty} \frac{1}{n^{2} - n^{-6}} \int_{n=0}^{\infty} \frac{1}{n^{2} - n^{2}} \int_{n=0}^{\infty} \frac{1}{$$

(d)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+n^2}}{n+n^3}$$
 Compare with $\frac{\sqrt{n^2}}{n^3} = \frac{n}{n^3} = \frac{1}{n^2} \sum_{n=1}^{\frac{1}{n^2}} \frac{1}{n^2} converges}{by P-Test}$

$$\frac{LCT}{n+n^3} : \lim_{n \to \infty} \frac{\frac{1}{n^2}}{\sqrt{n+n^2}} = \lim_{n \to \infty} \frac{1}{n^2} \cdot \frac{n+n^3}{\sqrt{n+n^2}n^4}$$

$$= \lim_{n \to \infty} \frac{n+n^3}{\sqrt{n^2+n^2}} \frac{n^3}{\sqrt{n^2}} = \frac{1}{n^3}$$
Since $\sum_{n=1}^{\infty} converges$, $\sum_{n=1}^{\infty} \frac{\sqrt{n+n^2}}{n+n^3}$ Converges by LCT.

3

1. Determine whether the following series are convergent to reference. Explain view:
(a)
$$\sum_{n=1}^{\infty} (1-1)^{n+1} = A^{n+1}$$
, $a_n = \binom{n}{n} = A^{n+1} = A^{n+1}$, $a_n = \binom{n}{n} = A^{n+1} = A^{n+1$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)}{n} = n = \int (-1)^n (n^n) = n + \frac{1}{n} = 0$$

an late $\left(\frac{d}{dx} \left(\frac{x^{d+1}}{x}\right) = -\frac{1}{x^{2}} < 0\right)$

$$\lim_{n \to \infty} \frac{n + n}{n} = 1$$

$$\lim_{n \to \infty} \frac{n + n}{n} = 1$$

$$\lim_{n \to \infty} \frac{n + n}{n} = 1$$

$$\lim_{n \to \infty} \frac{n + n}{n} = 0$$

$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{2\pi \cos n}{n}\right) = \frac{x^2 (-\sin n)}{\sqrt{n}} - \frac{(2\pi \cos n)^2 n}{\sqrt{n}}$$

$$\lim_{n \to \infty} \frac{1}{n^2} = 0$$

$$\lim_{n$$

1. For the convergent series in #1 of the previous section, determine which are absolutely convergent.

1a)
$$\sum_{n=1}^{\infty} (\frac{1}{n})^{n+1}$$
 converges by AST
 $a_n = (\frac{1}{n})^{n+1} = \frac{1}{n}$ dues $\sum_{n=1}^{\infty} converge}? NO$
by P-Test
 $\sum_{n=1}^{\infty} (-1)^{n+1}$ converges, but NOT absolutely
 $n=1$

BUT
$$|-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}+\frac{1}{2}$$
 converges

(b)
$$\sum_{n=1}^{\infty} (-1)^{n+1} 3n^2 e^{-n^3} \qquad c_n \text{ trunges by ASU} \qquad \text{Ratio Test}$$

 $a_n = 3n^2 e^{-n^3} \qquad \sum_{n=1}^{\infty} 3n^2 e^{-n^3} \qquad Ratio Test$
 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{3(n+1)^2 e^{-(n+1)}}{3n^2 e^{-n^3}} \qquad = \lim_{n \to \infty} \frac{3(n+1)^2 e^{-n^3}}{3n^2 e^{-n^3}} \qquad = \lim_{n \to \infty} \frac{n^3}{n^2 e^{-n^3}} \qquad = \lim_{n \to \infty} \frac{1}{n^3 e^{-$

7

(c) dryged no NAR
(d)
$$\sum_{n=1}^{\infty} (-1)^{\binom{n}{2}} (2n \cos n)$$

 $a_n = 2 (\cos n)^{\binom{n}{2}}$ Comparison test
 $c_0 S(n) < 1$ add a
 $a_1 c_0 (n) < \frac{1}{n^2}$ $z_1 a^{\binom{n}{2}}$ comages by Result
(larger stress contenges)
 $z_1 \le 2 + \cos(n)$ contages by Reparison $z_1 + 2 = \frac{1}{n^2}$
 $z_1 (2n \cos(n))$ contages absolutely
 $z_1 \le 2 + \cos(n)$ contages absolutely
 $z_1 \le 2 + \cos(n)$ contages $z_1 + \cos(n)$
 $z_1 \le 2 + \cos(n)$ contages $z_1 + \cos(n)$
 $z_1 \le 2 + \cos(n)$ contages $z_1 + \cos(n)$
 $z_1 \le 2 + \cos(n)$ contages $z_1 + \cos(n)$
 $z_1 \le 2 + \cos(n)$ contages $z_1 + \sin(n)$
 $z_1 \le 2 + \cos(n)$ contages $z_1 + \sin(n)$
 $z_1 \le 2 + \cos(n)$ contages $z_1 + \sin(n)$
 $z_1 \le 2 + \cos(n)$ contages $z_1 + \sin(n)$
 $z_1 \le 2 + \cos(n)$
 $z_1 \ge 2 + \cos(n)$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2n}}$$
 imponded, so Parto Test

$$\lim_{n\to\infty} \left| \frac{n}{n} \frac{n}{n} \right| = \lim_{n\to\infty} \frac{n}{(n+1)^{2n}} \cdot \frac{n}{n} \frac{n}{n} + \frac{$$

MATH 152-Spring 2020 Week in Review X	
1 Section 11.4 Con-revigence Tests 50	an hut to the Degrad (P
ND 2) Factorials and/or Beponent ND 3) is the (-1) ? YES	an series duerges by Test for Divergence tals? HES Ratio Test AST (may have to continue for abs convergence) LCT Comparison Test $(sin \leq 1)$ t
NOLL Ratio of Powers? YES NO 5) is sine/cosine? 4ES NO 5) Hupe to Integrate :-	Comparison Test (sin ≤ 1) +

1. Determine whether the following series are convergent or divergent. Explain why.

1

(a)
$$\sum_{n=1}^{\infty} \frac{\sin\left(\frac{1}{n}\right)}{n^2}$$