Fall 2004 MATH 171

Week in Review VII
courtesy of David J. Manuel
Section 3.11, 4.1, 4.2, 4.3

Section 3.11

1. Prove $d(u v)=u d v+v d u$.
2. Define the linearization L of a function f at $x=a$; prove that $L(a)=f(a)$ and $L^{\prime}(a)=f^{\prime}(a)$.

Section 4.1

3. Show that the line tangent to $y=e^{r x}$ at $x=a$ has an x-intercept at $x=a-\frac{1}{r}$.
4. Define the hyperbolic sine and hyperbolic cosine functions as follows:
$\cosh (x)=\frac{e^{x}+e^{-x}}{2}, \sinh (x)=\frac{e^{x}-e^{-x}}{2}$
a) Prove that $\cosh ^{2}(x)-\sinh ^{2}(x)=1$
b) Prove that $\frac{d}{d x}(\cosh (x))=\sinh (x)$.

Section 4.2

5. Prove that the function $f(x)=\frac{2-5 x}{3+x}$ is one-to-one and find f^{-1}
6. Given f is differentiable, f^{\prime} is never 0 and $g=f^{-1}$, assuming g is differentiable, find $g^{\prime}(a)$.

Section 4.3

7. Prove $\log _{a}(x y)=\log _{a} x+\log _{a} y$.
8. Prove $\lim _{x \rightarrow-\infty} e^{x}=0$ using the epsilon-delta definition of the limit.
9. Prove $a^{x}=e^{x \ln a}$ for all x and use this to compute $\frac{d}{d x}\left(a^{x}\right)$.
