Exam 1 Practice Problems

Part 3 - Matrices

1. Find the values of *a*, *b*, *c* and *d* in the matrix equation
$$5\begin{bmatrix} 2 & 4 \\ -1 & a \end{bmatrix} + \begin{bmatrix} -4 & b \\ c & 3 \end{bmatrix}^{\prime} = \begin{bmatrix} d & 0 \\ 1 & 6 \end{bmatrix}$$

2. A chain owns three restaurants (*I*, *II* and *III*) in the area and each serves breakfast (*B*), lunch (*L*) an dinner (*D*). The average number of meals sold on Mondays is shown in matrix *A*. The average price for a breakfast is \$3, the average price for a lunch is \$6 and the average price for a dinner is \$10. Find a matrix *B* such that when it is multiplied by matrix *A* it will give the matrix *R* with the average revenue for each restaurant on Mondays.

$$A = \begin{matrix} I & II & III \\ B & \begin{bmatrix} 66 & 300 & 250 \\ 150 & 200 & 400 \\ D & 50 & 600 & 220 \\ \end{matrix}$$

3. What is the system of linear equations that corresponds to the matrix equation AX=B if

$$A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \quad X = \begin{bmatrix} x \\ y \end{bmatrix} \quad B = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

4. We are given approximately how many grams of fat, carbohydrate and protein are in a "unit" of four different foods in matrix X. In matrix Y we are given how many calories are in a gram of fat, carbohydrate or protein. Is XY or YX meaningful and what does the meaningful product represent?

	cal		fat	carb	pro)
fat	$\begin{bmatrix} 8 \\ 4 \\ 5 \end{bmatrix}$	meat	5	0	7]
$Y = \int_{a}^{b} fat$		X = fruit	0	10	1	
carb		grain	0	15	2	ļ
pro		dairy	10	12	8	

5. Given that A is a non-singular 4x4 matrix, B is a singular 4x4 matrix, I is a 4x4 identity matrix, C is a 4x2 matrix, D is a 2x4 matrix, determine which of the operations below are allowed. If it is not allowed, explain why.

(a)	A+D	(b)	A+B	(c)	$C + D^{\mathrm{T}}$	(d)	BI	(e)	B^{-1}
(f)	A^{-1}	(g)	AC	(h)	D^2	(i)	B^2	(j)	CD

6. Solve the matrix equation AX + X = D for *X*.