Exam 2 Practice Problems

Part I – Linear Programming

1. A linear programming problem has an objective function \(f = 3x - 4y \) on the region
 \[
 4x + 5y \leq 20 \\
 x - 3y \leq 0 \\
 x \geq 1
 \]
 What are the maximum and minimum values of \(f \) and where are they located?

2. A linear programming problem has an objective function \(f = 2x + 8y \) on the region
 \[
 5x + 2y \geq 15 \\
 2x + 3y \geq 12 \\
 x + 4y \geq 10 \\
 x \geq 0, y \geq 0
 \]
 What are the maximum and minimum values of \(f \) and where are they located?

3. Set up the following Linear Programming problem
 Farmer Blue has 175 plots available to plant short- and long-stemmed strawberries. Each plot of long-stemmed strawberries will yield 40 baskets of strawberries and each plot of short-stemmed will yield 60 baskets of strawberries. He wants to have at least three times as many baskets of long-stemmed strawberries than he does of short-stemmed strawberries. The long-stemmed will sell for $4.00 per basket and the short-stemmed will sell for $3.00 per basket. How many plots of each type of strawberry should Farmer Blue plant to maximize his revenue?

4. A manufacturer makes two types of products: widgets and gadgets. Each widget and gadget needs to be fabricated, polished and wrapped as shown in the table below:

<table>
<thead>
<tr>
<th></th>
<th>fabrication minutes</th>
<th>polishing minutes</th>
<th>wrapping minutes</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>widget</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>$3</td>
</tr>
<tr>
<td>gadgets</td>
<td>9</td>
<td>10</td>
<td>6</td>
<td>$5</td>
</tr>
<tr>
<td>available time</td>
<td>288 minutes</td>
<td>338 minutes</td>
<td>275 minutes</td>
<td></td>
</tr>
</tbody>
</table>

How many of each type of product should be produced to realize a maximum profit? What is the maximum profit? What, if anything is leftover?