Exam 2 Practice Problems

Part I - Linear Programming

1. A linear programming problem has an objective function $f=3 x-4 y$ on the region

$$
\begin{aligned}
4 x+5 y & \leq 20 \\
x-3 y & \leq 0 \\
x & \geq 1
\end{aligned}
$$

What are the maximum and minimum values of f and where are they located?
2. A linear programming problem has an objective function $f=2 x+8 y$ on the region

$$
\begin{aligned}
5 x+2 y & \geq 15 \\
2 x+3 y & \geq 12 \\
x+4 y & \geq 10 \\
x \geq 0, y & \geq 0
\end{aligned}
$$

What are the maximum and minimum values of f and where are they located?
3. Set up the following Linear Programming problem

Farmer Blue has 175 plots available to plant short- and long-stemmed strawberries. Each plot of longstemmed strawberries will yield 40 baskets of strawberries and each plot of short-stemmed will yield 60 baskets of strawberries. He wants to have at least three times as many baskets of long-stemmed strawberries than he does of short-stemmed strawberries. The long-stemmed will sell for $\$ 4.00$ per basket and the short-stemmed will sell for $\$ 3.00$ per basket. How many plots of each type of strawberry should Farmer Blue plant to maximize his revenue?
4. A manufacturer makes two types of products: widgets and gadgets. Each widget and gadget needs to be fabricated, polished and wrapped as shown in the table below:

	fabrication minutes	polishing minutes	wrapping minutes	Profit
widget	9	12	11	$\$ 3$
gadgets	9	10	6	$\$ 5$
available time	288 minutes	338 minutes	275 minutes	

How many of each type of product should be produced to realize a maximum profit? What is the maximum profit? What, if anything is leftover?

