MATHEMATICS OF FINANCE
ON THE CALCULATOR, have TVM Solver

N is \# of compounding periods
i\% is annual interest rate as a \%
pr is Present value
PMT is Payments
iv is Future Value
$\begin{aligned} & P / X \text { is } \\ & C X\end{aligned}$ compounding frequency
set PMT: END (make payments at the end of the cycle) cloys, annual $\$ 100$ (9) 50 To use the TVM solver, enter all known values (5 of the 6). Put the cursor on the unknown and press SOLVE (alpha - enter)

EXAMPLE: You are planning a trip to Florida in 2 years. You want $\$ 2000$ available. You find an investment paying 10% compounded quarterly. How much do you need to invest now to have the money ready in 2 years?
$\mathrm{N}=2 \times 4=8 \quad \mathrm{PMT}=0 \quad \mathrm{I}=10$
$\mathrm{FV}=2000 \quad \mathrm{PV}=? \quad \mathrm{P} / \mathrm{Y}=4$

interest earned $=2000-1641.49=\$ 358.51$
interest earned $=2000-8(228,93)$
$=\$ 168.56$
Save up for the trip by making regular quarterly payments into an account paying 10% interest compounded quarterly.

NOTE about sign change - it is cash inflow and outflow.
Account has $\$ 162.89$ Interest earned 162.89

$$
\frac{-100,00}{62,89}
$$

Continuous com Poon ding? A-P ert

$$
A=100 e^{(.05 \times 10)}=164,87
$$

$\Rightarrow 64,87$ in interest

ANNUITIES
An annuity is an account to which regular payments are made.
An annuity that is certain and simple has the following properties:

1. The payments are made at fixed time intervals
2. The periodic payments are of equal size
3. The payments are made at the end of the interval
4. The interest is paid at the end of the interval

Many loans and savings plans are certain and simple annuities

EXAMPLE: You purchase a car for no money down and payments of $\$ 299$ a month for 60 months with interest of 12% charged on the unpaid balance every month. What was the cash price of the car? How much did you pay in interest?

What happens with a 4 year (48 payments) loan?

$$
\mathrm{N}=48 \quad \mathrm{PMT}=? \quad \mathrm{I}=12
$$

$$
F V=0 \quad P V=13442 \quad P / Y=12
$$

$$
\begin{aligned}
\text { Interest pond } & =(48)(354)-B+42 \\
& \$ 3550
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}=60 \quad \mathrm{PMT}=299 \quad \mathrm{I}=12 \\
& \mathrm{FV}=0 \quad \mathrm{PV}=? \quad \mathrm{P}=12
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\text { Interest rend } & =(60)(299)-13442 \\
& =\$ 4498
\end{aligned}
\end{aligned}
$$

You deposit $\$ 500$ per year for into a college fund paying 7\% compounded annually. How much is available in 18 years? How much interest is earned?

$$
\begin{array}{lll}
\mathrm{N}=18 & \mathrm{PMT}=500 & \mathrm{I}=7 \\
\mathrm{FV}=? & \mathrm{PV}=0 & \mathrm{P} / \mathrm{Y}=1
\end{array}
$$

$\$ 19000-18(500)=\$ 8000$

You deposit $\$ 2000$ per year into a retirement fund. If the money is deposited once per year in an account paying 10% compounded annually, how much is in the account after $10,20,30$ and 40 years?

$$
\begin{array}{lll}
\mathrm{N}=10 & \mathrm{PMT}=2000 & \mathrm{I}=10 \\
\mathrm{FV}=? & \mathrm{PV}=0 & \mathrm{P} / \mathrm{Y}=1
\end{array}
$$

After 10 years, $\$ 31,875$
After 20 years, $(N=20) * 114,550$
After 30 years, $(N=30) \$ 328,988$
After 40 years, $(N=40) \$ 885,185$

Look back at the car loan - how is it we paid so much interest?
At the end of the $1^{\text {st }}$ period we owe interest on the outstanding balance of $\$ 13442$.

Monthly interest rate is $12 \frac{\%}{\text { year }} \times \frac{1 \text { year }}{12 \text { months }}=1 \frac{\%}{\text { month }}$
Interest owed $=13442 \times .01=134.42$
Principal paid $=299-134,42=164,58$
So we now owe

$$
13442-164,58=13277,42
$$

$$
(164,58)+(13277.42)
$$

EQUITY:
How much of the item that belongs to you (not the bank)
End of the $2^{n i}$ period, owe the bank $\$ 13,277,42$
Interest owed $=13277,42 \times 101=132.77$
Principal paid $=299-132,77=166,23$
Now we owe 13111,19
Equity $=13442-13111.19=330.81$
In general,
EQUITY = VALUE OF ITEM - WHAT YOU OWE THE BANK.

This can be summarized in an AMORTIZATION TABLE:

To do a line of this in the calculator:

1. Calculate the payments.
2. Change N to the number of payments remaining on the loan
3. Solve for PV. This is what you still how the bank (outstanding principal)
4. Equity $=$ value of item - what you owe the bank.

EXAMPLE
You buy a $\$ 120,000$ house. You make a $\$ 20,000$ down payment and finance the remainder at 7.5% interest compounded monthly on the outstanding balance for 30 years.
a) How large are the monthly payments?
b) How much interest is paid in all?
c) What is the equity after 1 year? 5 years? 15 years?

$$
\begin{array}{lll}
\mathrm{N}=30 \times 12=360 & \mathrm{PMT}=? & \mathrm{I}=7.5 \\
\mathrm{FV}=0 & \mathrm{PV}=100000 & \mathrm{P} / \mathrm{Y}=12
\end{array}
$$

a) $\$ 699,21$
b) $(360)(699,21)-100000$
$=151,715,60$
c) What is the equity after 1 year

Equity $=120,000-99,078=\$ 20922$

Equity after 5 years?

Equity $=120,000-94617=\$ 25,383$

Equity after 15 years?

Equity $=120,000-75,427=\$ 44,573$

How long to double your investment?
$\$ 10,000$ at 6% annual interest compounded daily.

$$
\begin{array}{lll}
\mathrm{N}=? & \mathrm{I}=6 & \mathrm{PV}=10000 \\
\mathrm{PMT}=0 & \mathrm{FV}=-20000 & \mathrm{P} / \mathrm{Y}=365 \\
N=4217 \text { dali } &
\end{array}
$$

For $\mathrm{I}=9$, find $\mathrm{N}=2811 \mathrm{days}$

Rent-to-Own a cello: A cello is $\$ 574$ to buy or $\$ 40.58$ on a 24 month rent to own plan. What is the interest rate?

$$
\begin{array}{lll}
\mathrm{N}=24 & \mathrm{I}=? & \mathrm{PV}=-574 \\
\mathrm{PMT}=40.58 & \mathrm{FV}=0 & \mathrm{P} / \mathrm{Y}=12
\end{array}
$$

$$
I=56.96 \rightarrow 56.96 \%
$$

Pay off Credit Card: You owe $\$ 6000$ on a credit card that charges 18% annual interest compounded monthly on the outstanding principal. Make monthly payments of $\$ 120$. How long to pay off? How much interest is paid in all?

$$
\left\{\begin{array}{lll}
\mathrm{N}=? \\
\mathrm{PMT}=120 & \begin{array}{l}
\mathrm{IV}=18
\end{array} & \begin{array}{l}
\mathrm{PV}=-6000 \\
P / Y=12
\end{array} \\
\rightarrow 93.11 & \rightarrow 93 \text { or } 94 \text { months }
\end{array}\right.
$$

