NAME: \qquad KEY UIN: \qquad Score: \qquad / 10 points

Linear Cost, Revenue, and Profit Models

What is your seat number (on the back of the chair)? \qquad
You must work with at least one other person on this activity. List their names and seat numbers below:

The cost to make a sofa is $\mathbf{\$ 6 0 0}$ per sofa plus a fixed setup cost of $\mathbf{\$ 4 , 5 0 0}$. Each sofa sells for $\$ 750$.

1. What is the cost to manufacture 20 sofas? $\$ 4500+20 * 600=16,500$

Hint: Remember to include the setup cost along with the manufacturing cost for 20 sofas at $\$ 600$ each.
2. What is the cost to manufacture x sofas? $C(x)=4500+600 \mathrm{x}$
3. How much revenue is generated from selling 20 sofas at $\$ 750$ each? $\$ 750 * 20=15000$
4. How much revenue is generated from selling x sofas? $R(x)=750 \mathrm{x}$
5. How much profit does the company gain (or lose) by making and selling 20 sofas? $\$ 15000-\$ 16500$

Checkpoint: Did you find that the company loses $\$ 1500$? If not, subtract the answer to $\mathbf{1}$ from 3.
6. How much profit is gained or lost from selling x sofas? $P(x)=750 x-(600 x+4500)=150 x-4500$

- Total Cost function: $C(x)=c x+F$ gives the total cost for making x units at a unit cost of c and fixed costs F. This is the money paid out by the company.
- Revenue function: $R(x)=s x$ gives the total revenue from making and selling x units at the selling price s. This is the money brought in by the company.
- Profit function: $P(x)=R(x)-C(x)=s x-(c x+F)=(s-c) x-F$ gives the total profit from making and selling x units. This is the net amount of money the company will have after paying all of its expenses.

The linear Cost, Revenue, and Profit functions for this problem are:
$C(x)=600 x+4500$
$R(x)=750 x$
$P(x)=150 x-4500$

Hint: These are the same functions you should have found in 2,4 and 6.
7. How many sofas must be sold in order to have a profit of $\$ 12,000$? 110 sofas
8. Which of these three linear models has a positive y-intercept? C

Why? The y-intercept is when $x=0$. When $x=0$, we have fixed costs F, which are positive.
9. Which of these three linear models contains the origin? R

Why? When no items are sold ($\mathrm{x}=0$), the revenue is zero.
10. Which of these three linear models has a negative y-intercept? P

Why? When no items are made and sold, you lose your fixed costs.

