Binomial Probability

For a probability experiment to be binomial, it must have all of the following properties:

- The number of trials in the experiment is fixed. This value is called n.
- There are only two outcomes: Success and Failure.
- The probability of success in each trial is the same. This value is called p.
- The trials are independent of each other.

Part I

1. In a large city 30% of the residents like broccoli (B) and the rest do not like broccoli (N). Three residents are chosen at random and asked if they like broccoli or not.
a. Are there a fixed number of trials in this experiment? \qquad If yes, how many? $n=$ \qquad
b. Are there only two outcomes in every trial? \qquad If yes, what are they? \qquad and \qquad
c. Is the probability of success in each trial the same? \qquad If yes, a success is considered to be \qquad and the probability of this occurring is $p=$ \qquad
d. Does the outcome on one trial change the probabilities of the outcomes on other trials? \qquad If no, each trial is said to be \qquad of each other.
e. Is this a binomial experiment? \qquad
2. The tree diagram shows this experiment. How do the properties of binomial experiments relate to this tree diagram?
a. There are \qquad "stages" in the tree, which correspond to \qquad
b. Each "node" has \qquad branches that correspond to
c. The probabilities on the tree DO or DO NOT change (circle one) on each pair of branches throughout the tree, which means that

3. Let $X=\#$ of successes $=\#$ of residents who like broccoli.

Find the following probabilities using the tree diagram and the product rule.
a. Calculate the probability that 0 residents like broccoli, or $P(X=0)$. \qquad
b. Calculate the probability that exactly 1 resident likes broccoli, i.e., 1 success. \qquad
c. Calculate the probability that exactly 2 residents like broccoli, i.e., 2 successes. \qquad
d. Calculate the probability that all 3 residents like broccoli, i.e., 3 successes.
4. Organize this information in a probability distribution table with $X=\#$ of residents who like broccoli.

X	0	1	2	3
$P(X)$				

The probability of r successes in a binomial experiment with n trials and probability of success p is

$$
P(X=r)=C(n, r) p^{r}(1-p)^{n-r}
$$

5. On your calculator, enter the X values into list L 1 and $P(X)$ into list L 2 . Do 1-var stats L1, L2.

Mean $=\mu=$ \qquad Standard deviation $=\sigma=$ \qquad

What is $n \times p$? \qquad What is $\sqrt{n \times p \times(1-p)}$? \qquad
For BINOMIAL experiments, $\mu=n \times p$ and $\sigma=\sqrt{n \times p \times(1-p)}$

Part II

The binomial experiment in Part I had the following properties:
$X=\#$ of successes $=\#$ of residents who like broccoli, $n=3, p=0.30$ and $r=0,1,2$, or 3 .
With this information and your calculator, no tree or formula is needed to calculate probabilities.

$$
P(X=r)=\operatorname{binompdf}(n, p, r)
$$

To access this command, go to DISTR (above the VARS button) and scroll down to find it as command 0 :
Choose the value of r based on the specifics of the question you are asked.

1. What is the command to find the probability that exactly 2 residents like broccoli? $P(X=2)=$ binompdf $($ \qquad , \qquad , \qquad) $=$ \qquad This is the same value as Part I, 3c.

If you simply enter n and p in binompdf, it will list the probabilities for every value of X (from $X=0$ to $X=n$). Use the right and left arrows to scroll through the list.

For the remaining questions, assume that 20 residents are surveyed from the same city as in Part \mathbf{I}.
2. What is the probability that exactly 4 residents like broccoli?
a. Success $=$ likes broccoli, $n=20, p=$ \qquad , $r=$ \qquad
b. $P(X=4)=$ binompdf $($ \qquad , \qquad) $=$ \qquad
3. What is the probability that 3 or fewer residents like broccoli?
a. $r=$ desired $\#$ of successes $=0$, \qquad , \qquad , __. .
b. $P(0 \leq X \leq 3)=P(X=0)+$ \qquad $+$ $+$
 $=$

The calculator command binomedf sums the probabilities of 0 to r successes for you.

$$
P(0 \leq X \leq r)=\operatorname{binomcdf}(n, p, r)
$$

The binomcdf command is found under the binompdf command in the DISTR menu.

c. Find the same probability found in \mathbf{b} using the binomcdf command. $P(0 \leq X \leq 3)=\operatorname{binomcdf}($ \qquad , \qquad , \qquad) $=$ \qquad
4. What is the probability that more than 8 residents like broccoli? $r=9$, \qquad , ..., \qquad
Although the desired number of successes does not begin at 0 , the complement of the desired probability is $r=0$ to $r=8$ successes, which can be calculated with a binomcdf command.
$P(X>8)=1-P(0 \leq X \leq 8)=1-\operatorname{binomcdf}($ \qquad , \qquad , \qquad) $=$ \qquad
5. What is the probability that more than 4 , but fewer than 15 residents, like broccoli?

$$
r=5,
$$

\qquad , ...
This probability can be found by taking the probability of $r=0$ to $r=14$ successes and subtracting off the part of this probability that you do not want, $r=0$ to $r=4$ successes.

$$
\begin{aligned}
& P(5 \leq X \leq 14)=P(0 \leq X \leq 14)-P(0 \leq X \leq 4) \\
& \quad=\operatorname{binomcdf}(\ldots, \quad, \quad, \quad-\quad)-\quad
\end{aligned}
$$

6. What is the probability that between 6 and 12 residents like broccoli?

Hint: The word between means strictly inside of the two endpoints.
$r=$ \qquad , , ... \qquad
$P(\quad \leq X \leq$ \qquad $\overline{=P(0} \leq X \leq$ \qquad) $-P(0 \leq X \leq$ \qquad
\qquad
7. What is the probability that between 2 and 5 people inclusive like broccoli?

Hint: The word inclusive means that you include the endpoints.

$$
\begin{aligned}
& r=_, \\
& P\left(_\leq, \ldots,\right.=P\left(0 \leq X \leq _\right)-P\left(0 \leq X \leq _\right) \\
&= \\
&=
\end{aligned}
$$

8. What is the mean and standard deviation in the number of people who like broccoli when 20 people are surveyed?

$$
\text { Mean }=\mu=
$$ Standard deviation $=\sigma=$ \qquad

