8.5 and 8.6: The Normal Distribution

Continuous random variables can take on any value.
Let $\mathrm{t}=$ time in seconds to run a race
Let $\mathrm{w}=$ weight of kitten in kg

Let $\mathrm{L}=$ length of a week-old bean plant

Let $\mathrm{X}=$ value where pointer lands.
$0 \leq \mathrm{X}<1$ and $\mathrm{P}(0 \leq \mathrm{X}<1)=1$
What is $\mathrm{P}(\mathrm{X}=1 / 2)$?
What is $\mathrm{P}(0 \leq \mathrm{X}<1 / 4)$?

What is $\mathrm{P}(0.75 \leq \mathrm{X} \leq 0.80)$?
How can we represent this graphically?

When we graph the probability distribution for a continuous variable we find a probability density function.

Many natural and social phenomena produce a continuous distribution with a bell-shaped curve.

Every bell-shaped (NORMAL) curve has the following properties:

- Its peak occurs directly above the mean, μ
- The curve is symmetric about a vertical line through μ The curve never touches the x-axis. It extends indefinitely in both directions.
- The area between the curve and the x-axis is always 1 (total probability is 1).
The shape of the curve is completely determined by μ and σ,

$$
P(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

A continuous probability distribution is represented by a probability density function, f. The area between the graph of f and the x-axis from $x=a$ to $x=b$ gives the probability that the random variable X is between a and b.

The standard normal curve has $\mu=0$ and $\sigma=1$. Z is used to represent the standard normal curve instead of X in this special case.

On the normal curve to the right, shade the area where $-0.5<Z<0.5$.

The normalcdf function on your calculator is used to evaluate probabilities involving normal curves.

$$
P(a<X<b)=\text { normalcdf }(a, b, \mu, \sigma)
$$

$P(-0.5<Z<0.5)=\operatorname{normalcdf}(-0.5,0.5,0,1)=$
What is $P(Z>1.5)$?

What is $P(Z<2)$?

In the drawing on the right, the shaded region has an area of 0.25 . To find the value of c, the calculator has a function to "invert the normal curve" called invNorm.

invNorm(area to LEFT of unknown value, μ, σ)

$$
c=
$$

Find the value of b such that $P(Z>b)=0.10$.

Find the value of a such that $P(-a<Z<a)=0.60$.

