Vector Functions (Section 1.3)

A curve of the type \(x = x(t), \ y = y(t) \) is called a parametric curve and the variable \(t \) is the parameter.

EXAMPLE 1
Graph the parametric function \(x = t^3 - 2t, \ y = t^2 - t \)

\[\begin{array}{c}
\text{(a)} \ x = 2t - 1, \quad y = 2 - t, \quad -3 \leq t \leq 3 \\
\text{(b)} \ x = 2t - 1, \quad y = t^2 - 1
\end{array} \]

EXAMPLE 2
Sketch the curve represented by the parametric equations and then eliminate the parameter to find the Cartesian equation of the curve.

\[\begin{array}{c}
\text{(a)} \ x = 2t - 1, \quad y = 2 - t, \quad -3 \leq t \leq 3 \\
\text{(b)} \ x = 2t - 1, \quad y = t^2 - 1
\end{array} \]
For each value of the parameter t we may view the point $(x(t), y(t))$ on a parametric curve as the endpoint of a vector $\mathbf{r}(t) = \langle x(t), y(t) \rangle = x(t)\mathbf{i} + y(t)\mathbf{j}$

EXAMPLE 3
Describe the motion of a particle with position (x, y) or $\mathbf{r}(t)$ as t varies in the given interval.
(a) $\mathbf{r}(t) = (8t - 3)\mathbf{i} + (2t - 1)\mathbf{j}$, $0 \leq t \leq 1$

(b) $\mathbf{r}(t) = \langle 2\sin t, 3\cos t \rangle$, $0 \leq t \leq 2\pi$

Consider a line L as shown. Can we write this as a vector $\mathbf{r}(t)$?

The vector equation of a line is given by $\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}$ where \mathbf{r}_0 is a position vector to a point on the line, \mathbf{v} is a vector parallel to the line, and t is a scalar.

EXAMPLE 4
Given the points $(3, 4)$ and $(2, 8)$, find a vector equation and a parametric equations for the line that passes through these two points.
EXAMPLE 5
Given the point \(P(2, 5) \) and vector \(\mathbf{a} = \langle 3, 0 \rangle \), find
(a) a vector equation
(b) parametric equations
(c) a Cartesian equation for a line that passes through the point \(P \) and is parallel to \(\mathbf{a} \).

EXAMPLE 6
Determine if the lines below are parallel, perpendicular or neither. If the lines are not parallel, find the point of intersection
\(L_1 : \mathbf{r}(t) = \langle -4 + 2t, 5 + t \rangle \)
\(L_2 : \mathbf{r}(t) = \langle 2 + 3t, 4 - 6t \rangle \)

EXAMPLE 7
An object is moving in the \(xy \)-plane and its position after \(t \) seconds is \(\mathbf{r}(t) = \langle t - 3, t^2 - 2t \rangle \)
(a) Find the position of the object at time \(t = 5 \).
(b) At what time does the object pass through the point \((1, 8)\)?
(c) Does the object pass through the point \((3, 20)\)?
(d) Find an equation in \(x \) and \(y \) whose graph is the path of the object.