The Limit of a Function (Section 2.2)

The limit of \(f(x) \) as \(x \) approaches \(a \) is \(L \) if we can make the values of \(f(x) \) arbitrarily close to \(L \) as \(x \) is close to \(a \) but not equal to \(a \).

\[
\lim_{x \to a} f(x) = L
\]

What can we say about the \(f(x) \) in the graph on the left?

\(\lim_{x \to a^-} f(x) \) is the left-hand limit

\(\lim_{x \to a^+} f(x) \) is the right-hand limit

\[
\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^-} f(x) = L \quad \text{and} \quad \lim_{x \to a^+} f(x) = L
\]

Let \(f \) be a function defined on both sides of \(a \), except possibly at \(a \) itself. Then \(\lim_{x \to a} f(x) = \infty \) means that the values of \(f(x) \) can be made arbitrarily large by taking \(x \) sufficiently close to \(a \).

Similarly, \(\lim_{x \to a} f(x) = -\infty \) when the values of \(f(x) \) can be made arbitrarily negatively large by taking \(x \) sufficiently close to \(a \).
EXAMPLE 2

Sketch the graph of the function

\[g(x) = \begin{cases}
2 - x & \text{if } x < -1 \\
2 & \text{if } -1 \leq x < 1 \\
x & \text{if } x = 1 \\
4 - x & \text{if } x > 1
\end{cases} \]

Use the graph to find the following limits, if they exist:

a) \(\lim_{{x \to -1}} g(x) \)

b) \(\lim_{{x \to 1}} g(x) \)

EXAMPLE 3

Evaluate the function \(g(x) \) at the given values and then guess the value of \(\lim_{{x \to 2}} g(x) \).

\(g(x) = \frac{1 - x^2}{x^2 + 3x - 10} \)

\[g(3) = \quad g(2.001) = \]
\[g(2.1) = \quad g(2.0001) = \]
\[g(2.01) = \quad g(2.00001) = \]

EXAMPLE 4

Evaluate the function \(g(x) \) at the given values and then guess the value of \(\lim_{{x \to 0}} g(x) \).

\(g(x) = \frac{\cos x - 1}{\sin x} \)

\[g(-1) = \quad g(-0.1) = \]
\[g(-0.5) = \quad g(-0.01) = \]
\[g(-0.3) = \quad g(-0.001) = \]
EXAMPLE 5
Find the infinite limits

a) \(\lim_{x \to 0} \frac{x - 1}{x^2(x + 2)} \)

b) \(\lim_{x \to 5} \frac{6}{5 - x} \)

EXAMPLE 6
Find the vertical asymptotes of \(y = \frac{x}{x^2 - x - 2} \) and sketch the graph.

Limits of Vector Functions: \(\lim_{t \to a} r(t) = b \)

If \(r(t) = \langle f(t), g(t) \rangle \), then \(\lim_{t \to a} r(t) = \langle \lim_{t \to a} f(t), \lim_{t \to a} g(t) \rangle \)

EXAMPLE 7
Given \(r(t) = \left\langle \frac{t^2 - 4t + 4}{t - 2}, \frac{t^2 - 4}{2t - 4} \right\rangle \), find \(\lim_{t \to 2} r(t) \) by finding

\(r(1.2) = \) \(r(2.8) = \)

\(r(1.5) = \) \(r(2.5) = \)

\(r(1.8) = \) \(r(2.2) = \)

\(r(1.9) = \) \(r(2.1) = \)

\(r(1.99) = \) \(r(2.01) = \)