Antiderivatives (Section 5.7)

The derivative of what function \(F(x) \) will give the function \(f(x) = 2x \)? Since the derivative of \(x^2 \) is \(2x \), we can say the function \(F(x) = x^2 \) is the antiderivative of \(2x \).

EXAMPLE 1

Find the most general antiderivative for the following functions

(i) \(f(x) = x^3 - 4x^2 + 17 \)

(ii) \(f(x) = \sqrt[3]{x^2} - \sqrt{x^3} \)

(iii) \(f(x) = \frac{x + x^2 - 1}{x^3} \)

(iv) \(f(x) = e^x + \frac{4}{\sqrt{1-x^2}} \)

TABLE OF ANTIDERIVATIVES

<table>
<thead>
<tr>
<th>Function</th>
<th>Antiderivative</th>
<th>Function</th>
<th>Antiderivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>(kx + c)</td>
<td>(\sec x \tan x)</td>
<td>(\sec x + c)</td>
</tr>
<tr>
<td>(x^n, n \neq -1)</td>
<td>(\frac{x^{n+1}}{n+1} + c)</td>
<td>(\sec^2 x)</td>
<td>(\tan x + c)</td>
</tr>
<tr>
<td>(x^{-1})</td>
<td>(\ln</td>
<td>x</td>
<td>+ c)</td>
</tr>
<tr>
<td>(e^x)</td>
<td>(e^x + c)</td>
<td>(-\csc x \cot x)</td>
<td>(-\csc x + c)</td>
</tr>
<tr>
<td>(\cos x)</td>
<td>(\sin x + c)</td>
<td>(\frac{1}{x^2 + 1})</td>
<td>(\arctan x + c)</td>
</tr>
<tr>
<td>(\sin x)</td>
<td>(-\cos x + c)</td>
<td>(\frac{1}{\sqrt{1-x^2}})</td>
<td>(\arcsin x + c)</td>
</tr>
</tbody>
</table>
EXAMPLE 2
Find \(f(x) \) given that

(i) \(f'(x) = 12x^2 - 24x + 1 \) and \(f(1) = -2 \)

(ii) \(f''(x) = 3e^x + 4\sin x \), \(f(0) = 1 \), and \(f'(0) = 2 \)

EXAMPLE 3
A particle is moving with acceleration \(a(t) = 3t + 8 \text{ m/s}^2 \). Find the position \(s(t) \) of the object at time \(t \) if we know \(s(0) = 1 \) and \(v(0) = -2 \)

EXAMPLE 4
A stone is thrown downward from a 450m tall building at a speed of 5 m/s. Find a formula for the distance of the stone above ground.
EXAMPLE 5

A car braked with constant deceleration of 40 ft/s². The skid marks produced were 160 ft before the car came to a stop. How fast was the car traveling when the brakes were first applied?

A vector function \(\mathbf{R}(t) = X(t)\mathbf{i} + Y(t)\mathbf{j} = \langle X(t), Y(t) \rangle \) is called the antiderivative of \(\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} = \langle x(t), y(t) \rangle \) on an interval \(I \) if \(\mathbf{R}'(t) = \mathbf{r}(t) \) for all \(t \) in \(I \).

That is, \(X'(t) = x(t) \) and \(Y'(t) = y(t) \).

The most general antiderivative of \(\mathbf{r} \) on \(I \) is \(\mathbf{R}(t) + \mathbf{C} \) where \(\mathbf{C} \) is an arbitrary constant vector.

EXAMPLE 6

A projectile is fired from a position 200m above the ground with an initial speed of 500m/s and an angle of elevation of 30° above the horizontal. Find a vector equation for the position of the projectile at time \(t \) in seconds.