CHAPTER 2: BUSINESS EFFICIENCY

2.1 Hamiltonian Circuits

A path that visits each vertex exactly once is a Hamiltonian path.

A circuit that visits each vertex exactly once is a Hamiltonian circuit.

Example

Determine if the graphs below have a Hamiltonian path or circuit.

(A) There is a Hamiltonian circuit
(B) There is a Hamiltonian path
(C) There is neither
(D) Not sure
(E) I am lost
To find all possible Hamiltonian circuits, you can use the *method of trees* to list all possible paths from a particular starting point.

An *optimal* Hamiltonian circuit is the circuit that takes the least weight.

Example
Represent the data in the map below in a weighted graph. Then use the method of trees to determine the minimum cost (travel time, in hours) to visit Miami, San Juan, Barbados and Belize City if you must start and end in Miami. In what order do you visit the cities?
Example

Use the method of trees to find all Hamiltonian circuits starting at A.
A complete graph is a graph in which every pair of vertices is connected by exactly one edge.

Example
Determine which of the graphs below are complete.

How many edges does a complete graph with \(v \) vertices have?

\[
\text{# of edges} = \frac{v(v-1)}{2}
\]

Fundamental Theorem of Counting:
Suppose you have \(k \) tasks to be performed. The first task can be completed \(n_1 \) ways, the second task \(n_2 \) ways, etc. The total number of ways that these \(k \) tasks can be performed is the product

\[
n_1 \times n_2 \times ... n_k = n！ = n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1
\]

Brute Force Method:
- There are \(n! \) routes that visit every vertex once in a complete graph.
- There are \(n!/2 \) unique Hamiltonian circuits in a complete graph.
- If a starting point is specified, there are \((n-1)!/2\) unique Hamiltonian circuits in a complete graph.
2.2 Traveling Salesman Problem

The traveling salesman problem is a least cost Hamiltonian circuit problem.

Example
Use the brute-force method to find all unique Hamiltonian circuits for the complete graphs below starting at A.

\[
\begin{align*}
\text{A} & \quad \text{B} \\
\text{C} & \quad \text{D} \\
\end{align*}
\]

\[\# = \frac{(4-1)!}{2} = \frac{3!}{2} = \frac{3 \times 3 \times 1}{3} = 3\]

\[\text{ABCDCA} \quad \text{ACDBA} \quad \text{ADBCA}\]

\[\begin{align*}
\text{A} & \quad \text{B} \\
\text{C} & \quad \text{D} \\
\text{E} & \quad \text{F} \\
\end{align*}\]

\[\# = \frac{(5-1)!}{2} = \frac{4!}{2} = \frac{4 \times 3 \times 2 \times 1}{3} = 12\]

\[\text{ABCDEA} \quad \text{ACBDEA} \quad \text{ABCEDA} \quad \text{ACBDA} \quad \text{ABDCEA} \quad \text{ADCBEA} \quad \text{ABDECA} \quad \text{ADBECA} \quad \text{ABDCEA} \quad \text{ADBCCA} \quad \text{ABECDA} \quad \text{AEBDCA} \quad \text{ABCDCA}\]

How many unique Hamiltonian circuits for a complete graph with 6 vertices if the starting vertex is known?

(A) 60 (B) 120 (C) 360 (D) 720 (E) Not sure/None of these

\[\frac{(6-1)!}{2} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2} = 6\]

The TSP is an important and common problem to solve, so we need **heuristic algorithms**. These are algorithms that are fast but may not be optimal.
2.3 Helping Traveling Salesmen

Nearest Neighbor Algorithm:
Starting from the home city, visit the nearest city first. Then visit the nearest city that has not already been visited. Return to the home city when no other choices remain.

Note that a greedy algorithm is one in which the choices are made by what is best at the next step.

Example
Solve the following TSP using the NN algorithm starting at M.

Example
Solve the following TSP using the NN algorithm starting at D and also starting at A. Values are distances between points in miles.
Example

\[
\frac{(8-1)!}{2} = \frac{7!}{\frac{5!}{2}} = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{2} = 2520
\]

Solve the following TSP using the NN algorithm starting at Afton. If the brute force method was used, how many unique circuits would need to be checked? The distance is in miles.

<table>
<thead>
<tr>
<th></th>
<th>Afton</th>
<th>Bar Nunn</th>
<th>Casper</th>
<th>Laramie</th>
<th>Newcastle</th>
<th>Pine Bluffs</th>
<th>Rock Springs</th>
<th>Sleepy Hollow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afton</td>
<td>0</td>
<td>355</td>
<td>356</td>
<td>387</td>
<td>537</td>
<td>477</td>
<td>180</td>
<td>477</td>
</tr>
<tr>
<td>Bar Nunn</td>
<td>0</td>
<td>7</td>
<td>146</td>
<td>189</td>
<td>227</td>
<td>228</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Casper</td>
<td>0</td>
<td>142</td>
<td>185</td>
<td>223</td>
<td>228</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laramie</td>
<td>0</td>
<td>246</td>
<td>89</td>
<td>207</td>
<td>249</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newcastle</td>
<td>0</td>
<td>217</td>
<td>409</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine Bluffs</td>
<td>0</td>
<td></td>
<td>296</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Springs</td>
<td>0</td>
<td></td>
<td>351</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleepy Hollow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Where do we go from Afton?
(A) Laramie (B) Bar Nunn (C) Pine Bluffs (D) Rock Springs (E) Not Sure

\[
\begin{array}{c}
A \xrightarrow{180} R \xrightarrow{90} L \xrightarrow{89} P \xrightarrow{250} N \xrightarrow{18} S \xrightarrow{180} BN \xrightarrow{7} C \xrightarrow{356} A \\
1256 \text{ mi}
\end{array}
\]
Sorted Edges Algorithm:
1. Arrange edges of the complete graph in order of increasing cost
2. Select the lowest cost edge that has not already been selected that
 a. Does not cause a vertex to have 3 edges
 b. Does not close the circuit unless all vertices have been included.

\[\frac{\text{# of edges}}{2} = \frac{4 \times 3}{2} = 6 \]

Example
Solve the following TSP using the SE algorithm.

Example
Solve the following TSP using the SE algorithm.
2.4 Minimum Cost Spanning Trees

A connected graph that has no circuits is a tree. A spanning tree is a tree that has all the vertices of the original graph.

To create a spanning tree from a graph,
1. Find a circuit and remove one edge
2. Continue until there are no circuits

Example
Remove the edges from the following graphs to form a subgraph that is a tree.

How many spanning trees can be made from this graph?
(A) 1 (B) 2 (C) 4 (D) more than 4 (E) Not sure
A **minimal spanning tree** is a spanning tree with the smallest possible weight.

Kruskal’s Algorithm:
Add edges in order of increasing cost so that no circuit is formed.

Example
Use Kruskal’s Algorithm to find the minimal spanning tree from the graph below:

![Graph](image)
Example

Use the weighted graph below to find a minimal and a maximal spanning tree. What are some possible applications of a maximal spanning tree?

What is the cost of the minimal spanning tree using Kruskal’s alg?

- (A) 52
- (B) 53
- (C) 54
- (D) 55
- (E) more than 55

Minimal spanning tree has a total cost of 54.

Maximal spanning tree has a total cost of
2.5 Critical Path Analysis

A list of vertices connected by arrows is a directed graph or digraph.

If the tasks cannot be completed in a random order, then the order can be specified in an order-requirement digraph.

If the time to complete a task is shown on the digraph, it is a weighted digraph.

Suppose the first task T_1 takes 4 minutes and a second task T_2 takes 6 minutes and the second task can’t be started until the first task is done. This would be represented in a weighted digraph as

An independent task is one that can be done independently of any of the other tasks. So if task T_3 takes 1 minute and an independent task, the weighted order-requirement digraph would look like

How long would it take to complete the three tasks if two people were available?

(A) 1 minute
(B) 10 minutes
(C) 11 minutes
(D) None of these
(E) Not sure
Example
To make a tea tray requires you to complete the following tasks

- T_1: get the tea leaves (3 minutes)
- T_2: boil water (7 minutes)
- T_3: brew tea (5 minutes)
- T_4: pour milk (2 minutes)
- T_5: fill sugar bowl (1 minute)
- T_6: place items on tray (4 minutes)

Show this in a weighted order-requirement digraph.

Are any of the tasks independent? **NO**

How long would it take to prepare a tea tray if only one person was available? How might the person complete the tasks?

- $T_1, T_2, T_4, T_5, T_3, T_6$
- $T_4, T_5, T_2, T_1, T_3, T_6$

How long if two people were available? How might the people complete the tasks?
Example
Break down the recipe below into a series of tasks. Show these tasks in a weighted order-requirement digraph

Tortillas Slice the onion and chicken into strips.
Chicken Cook chicken 10 minutes then add
1 onion onions and cook for 5 more minutes.
Seasoning Add seasoning. Chop tomatoes and mix
Tomatoes with cilantro. Warm tortillas. Serve
Cilantro

\[
\begin{align*}
\check{T_1} &: \text{slice onion and chicken (5 min)} \\
\check{T_2} &: \text{cook chicken (10 min)} \\
\check{T_3} &: \text{add onions and cook (5 min)} \\
\check{T_4} &: \text{add seasoning (1 min)} \\
\check{T_5} &: \text{chop tomatoes (4 min)} \\
\check{T_6} &: \text{mix fom + cil (2 min)} \\
T_7 &: \text{warm tortillas (1 min)} \\
T_8 &: \text{Serve (1 min)}
\end{align*}
\]

1 person: 29 min

How long would it take to complete these tasks if two people were available?

(A) less than 21 minutes
(B) 21 minutes
(C) 22 minutes
(D) 23 minutes
(E) more than 23 minutes
A **critical path** on the digraph is the path that determines the earliest completion time.

Example

What is the critical path for preparing tea?

\[T_2 T_3 T_6 \quad 16 \text{ min} \]

What is the critical path for making fajitas?

\[T_1 T_2 T_3 T_4 T_8 \quad \text{for} \ 22 \text{ min} \]

Determine the critical path in the digraph below: