The first 17 problems will be on Trig Quiz 6. The order of the problems will be rearranged. The order of the solutions might be rearranged.

1. \(\sin^2 \theta = \)

\[
\begin{array}{ccccc}
\text{a)} & \cos^2 \theta - 1 & \text{b)} & 1 - \cos^2 \theta & \text{c)} & \frac{1 + \cos(2\theta)}{2} \\
\text{d)} & \frac{1 + \sin(2\theta)}{2} & \text{e)} & \frac{1}{\sec^2 \theta} \\
\end{array}
\]

2. \(1 + \tan^2 \theta = \)

\[
\begin{array}{ccccc}
\text{a)} & \csc^2 \theta & \text{b)} & -\csc^2 \theta & \text{c)} & -\sec^2 \theta \\
\text{d)} & \sec^2 \theta & \text{e)} & \frac{1}{\sec^2 \theta} \\
\end{array}
\]

3. \(\sec^2 \theta - \tan^2 \theta \)

\[
\begin{array}{ccccc}
\text{a)} & \csc^2 \theta & \text{b)} & -\csc^2 \theta & \text{c)} & -1 \\
\text{d)} & 0 & \text{e)} & 1 \\
\end{array}
\]

4. \(\sin(-\theta) = \)

\[
\begin{array}{ccccc}
\text{a)} & \sin(\theta) & \text{b)} & -\sin(\theta) & \text{c)} & \cos(\theta) \\
\text{d)} & -\cos(\theta) & \text{e)} & \sin\left(\frac{\theta}{2}\right) \\
\end{array}
\]

5. \(\cos(-\theta) = \)

\[
\begin{array}{ccccc}
\text{a)} & \sin(\theta) & \text{b)} & -\sin(\theta) & \text{c)} & \cos(\theta) \\
\text{d)} & -\cos(\theta) & \text{e)} & \cos\left(\frac{\theta}{2}\right) \\
\end{array}
\]
6. \(\sin(\alpha + \beta) = \)

a) \(\sin \alpha \cos \beta + \cos \alpha \sin \beta \)

b) \(\sin \alpha \cos \beta - \cos \alpha \sin \beta \)

c) \(\cos \alpha \cos \beta - \sin \alpha \sin \beta \)

d) \(\cos \alpha \cos \beta + \sin \alpha \sin \beta \)

e) \(\sin \alpha + \sin \beta \)

7. \(\sin(\alpha - \beta) = \)

a) \(\sin \alpha \cos \beta + \cos \alpha \sin \beta \)

b) \(\sin \alpha \cos \beta - \cos \alpha \sin \beta \)

c) \(\cos \alpha \cos \beta - \sin \alpha \sin \beta \)

d) \(\cos \alpha \cos \beta + \sin \alpha \sin \beta \)

e) \(\sin \alpha - \sin \beta \)

8. \(\cos(\alpha + \beta) = \)

a) \(\sin \alpha \cos \beta + \cos \alpha \sin \beta \)

b) \(\sin \alpha \cos \beta - \cos \alpha \sin \beta \)

c) \(\cos \alpha \cos \beta - \sin \alpha \sin \beta \)

d) \(\cos \alpha \cos \beta + \sin \alpha \sin \beta \)

e) \(\cos \alpha + \cos \beta \)
7. \(\cos(\alpha - \beta) = \)

 a) \(\sin \alpha \cos \beta + \cos \alpha \sin \beta \)
 b) \(\sin \alpha \cos \beta - \cos \alpha \sin \beta \)
 c) \(\cos \alpha \cos \beta - \sin \alpha \sin \beta \)
 d) \(\cos \alpha \cos \beta + \sin \alpha \sin \beta \)
 e) \(\cos \alpha - \cos \beta \)

8. \(\sin(2\alpha) \)

 a) \(2 \sin \alpha \cos \alpha \)
 b) \(2 \sin \alpha \)
 c) \(\cos^2 \alpha - \sin^2 \alpha \)
 d) \(\sin^2 \alpha - \cos^2 \alpha \)
 e) \(2 \cos \alpha \)

9. \(\cos(2\alpha) \)

 a) \(2 \sin \alpha \cos \alpha \)
 b) \(2 \sin \alpha \)
 c) \(\cos^2 \alpha - \sin^2 \alpha \)
 d) \(\sin^2 \alpha - \cos^2 \alpha \)
 e) \(2 \cos \alpha \)
10. \(\sin^2 \theta = \)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (\cos^2 \theta - 1)</td>
<td>b) (\frac{1 - \cos(2\theta)}{2})</td>
<td>c) (\frac{1 + \cos(2\theta)}{2})</td>
<td>d) (\frac{1 + \sin(2\theta)}{2})</td>
<td>e) (\frac{1 - \sin(2\theta)}{2})</td>
</tr>
</tbody>
</table>

11. \(\cos^2 \theta = \)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (\sin^2 \theta - 1)</td>
<td>b) (\frac{1 - \cos(2\theta)}{2})</td>
<td>c) (\frac{1 + \cos(2\theta)}{2})</td>
<td>d) (\frac{1 + \sin(2\theta)}{2})</td>
<td>e) (\frac{1 - \sin(2\theta)}{2})</td>
</tr>
</tbody>
</table>

12. The domain for \(\arcsin x \) is

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) ([-1, 1])</td>
<td>b) ((-\infty, \infty))</td>
<td>c) ([-\frac{\pi}{2}, \frac{\pi}{2}])</td>
<td>d) ([0, \pi])</td>
<td>e) ([-\pi, \pi])</td>
</tr>
</tbody>
</table>

13. The domain for \(\arccos x \) is

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) ([-1, 1])</td>
<td>b) ((-\infty, \infty))</td>
<td>c) ([-\frac{\pi}{2}, \frac{\pi}{2}])</td>
<td>d) ([0, \pi])</td>
<td>e) ([-\pi, \pi])</td>
</tr>
</tbody>
</table>

14. The domain for \(\arctan x \) is

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) ([-1, 1])</td>
<td>b) ((-\infty, \infty))</td>
<td>c) ([-\frac{\pi}{2}, \frac{\pi}{2}])</td>
<td>d) ([0, \pi])</td>
<td>e) ([-\pi, \pi])</td>
</tr>
</tbody>
</table>

15. The range for \(\arcsin x \) is

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) ([-1, 1])</td>
<td>b) ((-\infty, \infty))</td>
<td>c) ([-\frac{\pi}{2}, \frac{\pi}{2}])</td>
<td>d) ([0, \pi])</td>
<td>e) ([-\pi, \pi])</td>
</tr>
</tbody>
</table>
16. The range for $\arccos x$ is

<table>
<thead>
<tr>
<th></th>
<th>a) $[-1, 1]$</th>
<th>b) $(-\infty, \infty)$</th>
<th>c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$</th>
<th>d) $[0, \pi]$</th>
<th>e) $[-\pi, \pi]$</th>
</tr>
</thead>
</table>

17. The range for $\arctan x$ is

<table>
<thead>
<tr>
<th></th>
<th>a) $[-1, 1]$</th>
<th>b) $(-\infty, \infty)$</th>
<th>c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$</th>
<th>d) $[0, \pi]$</th>
<th>e) $[-\pi, \pi]$</th>
</tr>
</thead>
</table>

After the first 17 problems there will be

One problem like this:

18. $\arcsin\left(\sin\left(\frac{7\pi}{4}\right)\right) = \frac{7\pi}{4}$

 a) TRUE
 b) FALSE

18. $\arccos\left(\cos\left(\frac{\pi}{4}\right)\right) = \frac{\pi}{4}$

 a) TRUE
 b) FALSE

18. $\cos\left(\arccos\left(\frac{2}{3}\right)\right) = \frac{2}{3}$

 a) TRUE
 b) FALSE

18. $\tan\left(\arctan(e)\right) = \frac{1}{e}$

 a) TRUE
 b) FALSE
Then there will be one problem like this:

19. Determine the exact value of \(\cos(\arctan(5)) \)

- a) \(\frac{1}{\sqrt{26}} \)
- b) \(\frac{5}{\sqrt{26}} \)
- c) \(\frac{1}{5} \)
- d) \(\frac{\sqrt{26}}{5} \)
- e) \(\sqrt{26} \)

19. Determine the exact value of \(\tan(\arcsin\left(\frac{2}{3}\right)) \)

- a) \(-\frac{2}{\sqrt{5}} \)
- b) \(\frac{2}{\sqrt{5}} \)
- c) \(-\frac{3}{2} \)
- d) \(\frac{\sqrt{5}}{3} \)
- e) \(-\frac{3}{\sqrt{13}} \)

19. Determine the exact value of \(\cos(\arcsin\left(-\frac{1}{3}\right)) \)

- a) \(-\frac{1}{\sqrt{10}} \)
- b) \(\frac{3}{\sqrt{10}} \)
- c) \(-\frac{2\sqrt{2}}{3} \)
- d) \(\frac{2\sqrt{2}}{3} \)
- e) \(-\frac{2}{3} \)
There will be one problem from this page:

20. \(\cos(15°) = \)

| a) \(\frac{\sqrt{6} + \sqrt{2}}{4} \) | b) \(\frac{\sqrt{6} - \sqrt{2}}{4} \) | c) \(\frac{\sqrt{2} - \sqrt{6}}{4} \) | d) \(\frac{1}{2} - \frac{\sqrt{2}}{2} \) | e) \(\frac{1}{2} + \frac{\sqrt{2}}{2} \) |

20. \(\sin(15°) = \)

| a) \(\frac{\sqrt{6} + \sqrt{2}}{4} \) | b) \(\frac{\sqrt{6} - \sqrt{2}}{4} \) | c) \(\frac{\sqrt{2} - \sqrt{6}}{4} \) | d) \(\frac{\sqrt{3} - \sqrt{2}}{2} \) | e) \(\frac{\sqrt{3} + \sqrt{2}}{2} \) |

20. \(\cos(105°) = \)

| a) \(\frac{\sqrt{6} + \sqrt{2}}{4} \) | b) \(\frac{\sqrt{6} - \sqrt{2}}{4} \) | c) \(\frac{\sqrt{2} - \sqrt{6}}{4} \) | d) \(\frac{\sqrt{3} - \sqrt{2}}{2} \) | e) \(\frac{\sqrt{3} + \sqrt{2}}{2} \) |

20. \(\sin(105°) = \)

| a) \(\frac{\sqrt{6} + \sqrt{2}}{4} \) | b) \(\frac{\sqrt{6} - \sqrt{2}}{4} \) | c) \(\frac{\sqrt{2} - \sqrt{6}}{4} \) | d) \(\frac{\sqrt{3} - \sqrt{2}}{2} \) | e) \(\frac{\sqrt{3} + \sqrt{2}}{2} \) |

20. \(\cos(75°) \)

| a) \(\frac{\sqrt{6} + \sqrt{2}}{4} \) | b) \(\frac{\sqrt{6} - \sqrt{2}}{4} \) | c) \(\frac{\sqrt{2} - \sqrt{6}}{4} \) | d) \(\frac{\sqrt{3} - \sqrt{2}}{2} \) | e) \(\frac{\sqrt{3} + \sqrt{2}}{2} \) |

20. \(\sin(75°) \)

| a) \(\frac{\sqrt{6} + \sqrt{2}}{4} \) | b) \(\frac{\sqrt{6} - \sqrt{2}}{4} \) | c) \(\frac{\sqrt{2} - \sqrt{6}}{4} \) | d) \(\frac{\sqrt{3} - \sqrt{2}}{2} \) | e) \(\frac{\sqrt{3} + \sqrt{2}}{2} \) |
Finally, the last problem will be like this:

21. If θ is acute and $\sin \theta = \frac{2}{3}$, then $\cos \theta =$

| a) $\frac{1}{3}$ | b) $\frac{5}{9}$ | c) $\frac{\sqrt{5}}{3}$ | d) $-\frac{3}{2}$ | e) $\frac{3}{\sqrt{5}}$ |

21. If θ is acute and $\sin \theta = \frac{1}{6}$, then $\cos \theta =$

| a) $\frac{5}{6}$ | b) $\frac{35}{36}$ | c) $\frac{\sqrt{35}}{6}$ | d) -6 | e) $\frac{6}{\sqrt{35}}$ |

21. If θ is acute and $\cos \theta = \frac{3}{5}$, then $\sin \theta =$

| a) $\frac{2}{5}$ | b) $\frac{16}{25}$ | c) $\frac{4}{5}$ | d) -6 | e) $\frac{6}{\sqrt{35}}$ |

21. If θ is acute and $\tan \theta = \frac{2}{3}$, then $\sec \theta =$

| a) $\frac{1}{3}$ | b) $-\frac{3}{2}$ | c) $\frac{13}{9}$ | d) $\frac{\sqrt{13}}{3}$ | e) $\frac{5}{3}$ |
21. If θ is acute and $\tan \theta = \frac{5}{4}$, then $\sec \theta =$

<table>
<thead>
<tr>
<th></th>
<th>a) $\frac{1}{4}$</th>
<th>b) $-\frac{4}{5}$</th>
<th>c) $\frac{41}{16}$</th>
<th>d) $\frac{\sqrt{41}}{4}$</th>
<th>e) $\frac{9}{4}$</th>
</tr>
</thead>
</table>

21. If θ is acute and $\sec \theta = \frac{3}{2}$, then $\tan \theta =$

<table>
<thead>
<tr>
<th></th>
<th>a) $\frac{2}{3}$</th>
<th>b) $\frac{1}{2}$</th>
<th>c) $\frac{5}{4}$</th>
<th>d) $\frac{\sqrt{5}}{2}$</th>
<th>e) $\frac{\sqrt{13}}{2}$</th>
</tr>
</thead>
</table>

21. If θ is acute and $\sec \theta = \frac{5}{3}$, then $\tan \theta =$

<table>
<thead>
<tr>
<th></th>
<th>a) $\frac{1}{4}$</th>
<th>b) $-\frac{4}{5}$</th>
<th>c) $\frac{41}{16}$</th>
<th>d) $\frac{\sqrt{41}}{4}$</th>
<th>e) $\frac{9}{4}$</th>
</tr>
</thead>
</table>