2.7 The Derivative as a Function

Recall that the instantaneous rate of change of a function f at a point a is the slope of the tangent line to the graph of f at the point $(a, f(a))$, which is given by the limit

$$
\lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
$$

Since this type of a limit arises whenever we calculate a rate of change in any of the sciences or engineering, and it occurs so widely, it is given a special name and notation.

Definition: The derivative of a function f at a point a is given by the formula

$$
f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
$$

If we let a vary and replace it by a variable x then we obtain a new function

$$
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
$$

which is called the derivative of f.

Other Notations for the derivative of $y = f(x)$:

$$
f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx} f(x)
$$

Activity 1: If $f(x) = \sqrt{x}$, find the derivative of f. State the domain of f'.

\[\text{Activity 1} \quad \text{If } f(x) = \sqrt{x}, \text{ find the derivative of } f. \text{ State the domain of } f'. \]
Definition: A function f is **differentiable at a point** a if It is differentiable on an open interval (a, b) if it is differentiable at

Geometrically, a function is differentiable at a point a, if the graph of the function passes “smoothly” through that point.

Activity 2: Try to draw tangent lines at the point $x = a$ for each graph given below.

If $f'(a)$ does not exist, then we say that $f(x)$ is **non-differentiable** at $x = a$. This occurs when the graph has:

1.
2.
3.

Activity 3: Explore the relationship with differentiability and continuity, and fill in the blanks of the below sentence using the words *continuous* and *differentiable*, when appropriate.

If f is at a point a then it must be .. at a.

Activity 4: The graph of a function $f(x)$ is given. Sketch a rough graph of $y = f'(x)$.
Activity 5: Match the graphs of the functions shown in (a)-(f) with the graphs of their derivatives in (A)-(F).
Definition: If f is a differentiable function, then its derivative f' is also a function, so f' may have a derivative of its own, denoted by $(f')' = f''$. This new function f'' is called the **second derivative** of f because it is the derivative of the derivative of f.

\[f''(x) = y'' = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2} \]

Position, Velocity, and Acceleration:

- The position function of an object that moves in a straight line is usually given by $s(t)$.

- The velocity of an object as a function of time is given by:

- The acceleration of an object is the instantaneous rate of change of velocity with respect to time and is given by:

Activity 6: The figure shows the graphs of three functions. One is the position function of a car, one is the velocity of the car, and one is its acceleration. Identify each curve, and explain your choices.

![Graph of three functions](image)
2.8 What Does f' Say about f?

Preview Activity: In each part, use the graph of $y = f(x)$ in the accompanying figure to find the requested information.

![Graph of $y = f(x)$ with points at x=1, 2, 3, 4, 5, 6, 7]

(a) Find the intervals on which f is increasing.

(b) Find the intervals on which f is decreasing.

(c) Find the intervals on which f' is positive.

(d) Find the intervals on which f' is positive.

Activity 1: Fill in the blanks in the following sentences.

If $f'(x) > 0$ on an interval, then f is on that interval.

If $f'(x) < 0$ on an interval, then f is on that interval.

If $f'(x) = 0$ on an interval, then f is on that interval.
Activity 2: The graph of f' is given. On what intervals is f decreasing, increasing?

Definition:

- We say that f has a **local maximum** at a point a, if the derivative of f changes sign from positive to negative at a.

- We say that f has a **local minimum** at a point a, if the derivative of f changes sign from negative to positive at a.

Activity 3: Find local maxima and local minima of the function f whose derivative is given in Activity 2.
Definition:

- The graph of a function f is **concave upward** on the interval (a, b) if

- The graph of a function f is **concave downward** on the interval (a, b) if

- A point a is called an **inflection point** of f if Graphically, its where

Activity 4: The graph of f is given below. Find the intervals where f is increasing/decreasing, concave up/concave down, find all local maximum/minimum points, find all inflection points.
Activity 5: Sketch the graph of a function which satisfies the following

- \(f'(x) > 0 \) for all \(x \neq 1 \)
- has a vertical asymptote at \(x = 1 \)
- \(f''(x) > 0 \) if \(x < 1 \) or \(x > 3 \)
- \(f''(x) < 0 \) if \(1 < x < 3 \)