$\label{eq:constraint} \begin{array}{c} \mbox{Contents} \\ \mbox{Lipschitz-free spaces in general} \\ \mbox{Embedding of } \ell_{\infty} \ \mbox{into } \mbox{Lip}_0(M) \ \mbox{and } \ell_1 \ \mbox{into } \mathcal{F}(M) \\ \mbox{Embeddings of } \ell_1 \ \mbox{into a general Banach space } X \end{array}$

Embedding of ℓ_1 into Lipschitz-free Banach spaces and ℓ_∞ into their duals

Marek Cúth

Metric Spaces: Analysis, Embeddings into Banach Spaces, Applications

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

- M. Cúth, M. Doucha and P. Wojtaszczyk, On the structure of Lipschitz-free spaces, Proc. Amer. Math. Soc., 144 (9) (2016), 3833–3846.
- M. Cúth and M. Johanis, *Isometric embedding of* ℓ_1 *into Lipschitz-free spaces and* ℓ_{∞} *into their duals*, preprint available at arxiv.org

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lipschitz-free spaces in general

Definition and universal property

2 Embedding of ℓ_{∞} into $\operatorname{Lip}_{0}(M)$ and ℓ_{1} into $\mathcal{F}(M)$

- Embedding of ℓ_{∞} into $\operatorname{Lip}_{0}(M)$
- Embedding of ℓ_1 into $\mathcal{F}(M)$

Sembeddings of ℓ_1 into a general Banach space X

Definitions

Definition and universal property

Setting: $(M, \rho, 0)$ is a metric space with a distinguished point 0.

イロン イ理 とく ヨン イヨン

э.

Definitions

Setting: $(M, \rho, 0)$ is a metric space with a distinguished point 0.

- $\operatorname{Lip}_0(M) := \{ f : M \to \mathbb{R} : f \text{ is Lipschitz and } f(0) = 0 \},\$

Definition and universal property

Definitions

Definition and universal property

Setting: $(M, \rho, 0)$ is a metric space with a distinguished point 0.

- $\operatorname{Lip}_0(M) := \{ f : M \to \mathbb{R} : f \text{ is Lipschitz and } f(0) = 0 \},\$

- Lip₀(*M*) with a norm $||f||_{Lip} := \sup \left\{ \frac{|f(x) - f(y)|}{\rho(x, y)} : x \neq y \in M \right\}$ is a Banach space,

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

 $\begin{array}{c} \mbox{Contents}\\ \mbox{Lipschitz-free spaces in general}\\ \mbox{Embedding of } \ell_{\infty} \mbox{ into } \mbox{Lip}_0(M) \mbox{ and } \ell_1 \mbox{ into } \mathcal{F}(M)\\ \mbox{Embeddings of } \ell_1 \mbox{ into a general Banach space } X \end{array}$

Definitions

Setting: $(M, \rho, 0)$ is a metric space with a distinguished point 0.

- $\operatorname{Lip}_0(M) := \{ f : M \to \mathbb{R} : f \text{ is Lipschitz and } f(0) = 0 \},\$

- Lip₀(*M*) with a norm $||f||_{Lip} := \sup \left\{ \frac{|f(x) - f(y)|}{\rho(x,y)} : x \neq y \in M \right\}$ is a Banach space,

- $\delta : M \to \text{Lip}_0(M)^*$ is defined by $\delta(m)(f) := f(m)$ for $m \in M$ and $f \in \text{Lip}_0(M)$. It is isometric embedding.

Definition and universal property

(ロ) (同) (三) (三) (三) (○) (○)

Definitions

Setting: $(M, \rho, 0)$ is a metric space with a distinguished point 0.

- $\operatorname{Lip}_{0}(M) := \{ f : M \to \mathbb{R} : f \text{ is Lipschitz and } f(0) = 0 \},\$

- Lip₀(*M*) with a norm $||f||_{Lip} := \sup \left\{ \frac{|f(x) - f(y)|}{\rho(x,y)} : x \neq y \in M \right\}$ is a Banach space,

- $\delta : M \to \text{Lip}_0(M)^*$ is defined by $\delta(m)(f) := f(m)$ for $m \in M$ and $f \in \text{Lip}_0(M)$. It is isometric embedding.

Definition

Given $(M, \rho, 0)$, we define the Lipschitz-free space over M by

 $\mathcal{F}(M) := \overline{\operatorname{span}}\{\delta(m): m \in M\} \subset \operatorname{Lip}_0(M)^*.$

(ロ) (同) (三) (三) (三) (○) (○)

Universal property

Definition and universal property

Proposition (Universal property)

Let $(M, \rho, 0)$ be as above, X a Banach space and $L : M \to X$ a Lipschitz mapping with L(0) = 0. Then there is a unique linear operator $\hat{L} : \mathcal{F}(M) \to X$ with $\hat{L}\delta = L$ and $\|\hat{L}\| = \|L\|_{Lip}$.

< □ > < □ > < □ > < □ > < □ >

 $\label{eq:contents} \begin{array}{c} \text{Contents}\\ \text{Lipschitz-free spaces in general}\\ \text{Embedding of } \ell_{\infty} \mbox{ into } \text{Lip}_0(M) \mbox{ and } \ell_1 \mbox{ into } \mathcal{F}(M)\\ \text{Embeddings of } \ell_1 \mbox{ into a general Banach space } X \end{array}$

Universal property

Definition and universal property

Proposition (Universal property)

Let $(M, \rho, 0)$ be as above, X a Banach space and $L : M \to X$ a Lipschitz mapping with L(0) = 0. Then there is a unique linear operator $\hat{L} : \mathcal{F}(M) \to X$ with $\hat{L}\delta = L$ and $\|\hat{L}\| = \|L\|_{Lip}$.

SHOW A PICTURE

 $\label{eq:contents} \begin{array}{c} \text{Contents}\\ \text{Lipschitz-free spaces in general}\\ \text{Embedding of } \ell_{\infty} \mbox{ into } \text{Lip}_0(M) \mbox{ and } \ell_1 \mbox{ into } \mathcal{F}(M)\\ \text{Embeddings of } \ell_1 \mbox{ into a general Banach space } X \end{array}$

Universal property

Definition and universal property

Proposition (Universal property)

Let $(M, \rho, 0)$ be as above, X a Banach space and $L : M \to X$ a Lipschitz mapping with L(0) = 0. Then there is a unique linear operator $\hat{L} : \mathcal{F}(M) \to X$ with $\hat{L}\delta = L$ and $\|\hat{L}\| = \|L\|_{Lip}$.

Corollaries:

- $\mathcal{F}(M)^*$ is isometric to $\operatorname{Lip}_0(M)$,

 $\label{eq:constraint} \begin{array}{c} \mbox{Contents}\\ \mbox{Lipschitz-free spaces in general}\\ \mbox{Embedding of } \ell_{\infty} \mbox{ into } \mbox{Lip}_0(M) \mbox{ and } \ell_1 \mbox{ into } \mathcal{F}(M)\\ \mbox{Embeddings of } \ell_1 \mbox{ into a general Banach space } X \end{array}$

Universal property

Definition and universal property

Proposition (Universal property)

Let $(M, \rho, 0)$ be as above, X a Banach space and $L : M \to X$ a Lipschitz mapping with L(0) = 0. Then there is a unique linear operator $\hat{L} : \mathcal{F}(M) \to X$ with $\hat{L}\delta = L$ and $\|\hat{L}\| = \|L\|_{Lip}$.

Corollaries:

- $\mathcal{F}(M)^*$ is isometric to $\operatorname{Lip}_0(M)$,
- In the following picture, all the arrows commute:

SHOW A PICTURE

<u>Embedding</u> of ℓ_{∞} into Lip₀(M)

Embedding of ℓ_{∞} into Lip₀(*M*) Embedding of ℓ_1 into $\mathcal{F}(M)$

First idea: Consider functions $f_n(x) = \max\{r_n - \rho(x, x_n), 0\}$ with disjoint supports; i.e., $U(x_n, r_n)$ are pairwise disjoint.

< ロ > < 同 > < 三 > < 三 > -

Embedding of ℓ_{∞} into Lip₀(*M*) Embedding of ℓ_1 into $\mathcal{F}(M)$

Embedding of ℓ_{∞} into $\operatorname{Lip}_{0}(M)$

First idea: Consider functions $f_n(x) = \max\{r_n - \rho(x, x_n), 0\}$ with disjoint supports; i.e., $U(x_n, r_n)$ are pairwise disjoint. Candidate for an embedding:

$$\ell_{\infty} \ni (a_n)_{n \in \mathbb{N}} \mapsto \sum_{n \in \mathbb{N}} a_n f_n$$

< ロ > < 同 > < 三 > < 三 > -

Embedding of ℓ_{∞} into Lip₀(*M*) Embedding of ℓ_1 into $\mathcal{F}(M)$

Embedding of ℓ_{∞} into $\operatorname{Lip}_{0}(M)$

First idea: Consider functions $f_n(x) = \max\{r_n - \rho(x, x_n), 0\}$ with disjoint supports; i.e., $U(x_n, r_n)$ are pairwise disjoint. Candidate for an embedding:

$$\ell_{\infty} \ni (a_n)_{n \in \mathbb{N}} \mapsto \sum_{n \in \mathbb{N}} a_n f_n$$

Our result: If *M* is an infinite metric space, then $\text{Lip}_0(M)$ contains a subspace isometric to ℓ_{∞} .

< □ > < □ > < □ > < □ > < □ >

Embedding of ℓ_{∞} into Lip₀(*M*) Embedding of ℓ_1 into $\mathcal{F}(M)$

Embedding of ℓ_{∞} into $\operatorname{Lip}_{0}(M)$

First idea: Consider functions $f_n(x) = \max\{r_n - \rho(x, x_n), 0\}$ with disjoint supports; i.e., $U(x_n, r_n)$ are pairwise disjoint. Candidate for an embedding:

$$\ell_{\infty} \ni (a_n)_{n \in \mathbb{N}} \mapsto \sum_{n \in \mathbb{N}} a_n f_n$$

Our result: If *M* is an infinite metric space, then $\text{Lip}_0(M)$ contains a subspace isometric to ℓ_{∞} .

Relation with the embedding of ℓ_1 **into** $\mathcal{F}(M)$: [Bessaga, Pełczyński] $\ell_{\infty} \hookrightarrow X^*$ if and only if $\ell_1 \stackrel{c}{\hookrightarrow} X$.

< □ > < □ > < □ > < □ > < □ >

Contents Lipschitz-free spaces in general Embedding of ℓ_{∞} into Lip₀(*M*) and ℓ_1 into $\mathcal{F}(M)$ Embeddings of ℓ_1 into a general Banach space *X*

Embedding of ℓ_{∞} into Lip₀(*M*) Embedding of ℓ_1 into $\mathcal{F}(M)$

Consequences of $\ell_{\infty} \hookrightarrow \operatorname{Lip}_{0}(M)$

Theorem

Let M be an infinite metric space. For the Banach space $X = \mathcal{F}(M)$, we have

(i) $\ell_1 \stackrel{c}{\hookrightarrow} X$, *i.e.*, there is a complemented subspace of X isomorphic to ℓ_1 .

< □ > < □ > < □ > < □ > < □ >

Embedding of ℓ_{∞} into Lip₀(*M*) Embedding of ℓ_1 into $\mathcal{F}(M)$

Consequences of $\ell_{\infty} \hookrightarrow \operatorname{Lip}_{0}(M)$

Theorem

Let M be an infinite metric space. For the Banach space $X = \mathcal{F}(M)$, we have

(i) $\ell_1 \stackrel{c}{\hookrightarrow} X$, i.e., there is a complemented subspace of X isomorphic to ℓ_1 . From this we get

(ii) X → C(K), i.e., X is not isomorphic to a complemented subspace of a C(K) space.

Embedding of ℓ_{∞} into $\text{Lip}_{0}(M)$ Embedding of ℓ_{1} into $\mathcal{F}(M)$

Consequences of $\ell_{\infty} \hookrightarrow \operatorname{Lip}_{0}(M)$

Theorem

Let M be an infinite metric space. For the Banach space $X = \mathcal{F}(M)$, we have

(i) $\ell_1 \stackrel{c}{\hookrightarrow} X$, i.e., there is a complemented subspace of X isomorphic to ℓ_1 . From this we get

- (ii) X → C(K), i.e., X is not isomorphic to a complemented subspace of a C(K) space.
- (iii) X* is not weakly sequentially complete; in particular, X is not isomorphic to L¹-predual.

Embedding of ℓ_{∞} into $\text{Lip}_{0}(M)$ Embedding of ℓ_{1} into $\mathcal{F}(M)$

Consequences of $\ell_{\infty} \hookrightarrow \operatorname{Lip}_{0}(M)$

Theorem

Let M be an infinite metric space. For the Banach space $X = \mathcal{F}(M)$, we have

(i) $\ell_1 \stackrel{c}{\hookrightarrow} X$, i.e., there is a complemented subspace of X isomorphic to ℓ_1 . From this we get

- (ii) X → C(K), i.e., X is not isomorphic to a complemented subspace of a C(K) space.
- (iii) X* is not weakly sequentially complete; in particular, X is not isomorphic to L¹-predual.
- (iv) X is not isomorphic to the Gurariĭ space.

Embedding of ℓ_{∞} into $\text{Lip}_{0}(M)$ Embedding of ℓ_{1} into $\mathcal{F}(M)$

Consequences of $\ell_{\infty} \hookrightarrow \operatorname{Lip}_{0}(M)$

Theorem

Let M be an infinite metric space. For the Banach space $X = \mathcal{F}(M)$, we have

(i) $\ell_1 \stackrel{c}{\hookrightarrow} X$, i.e., there is a complemented subspace of X isomorphic to ℓ_1 . From this we get

- (ii) X → C(K), i.e., X is not isomorphic to a complemented subspace of a C(K) space.
- (iii) X* is not weakly sequentially complete; in particular, X is not isomorphic to L¹-predual.
- (iv) X is not isomorphic to the Gurariĭ space.
- (v) X is a projectively universal separable Banach space, i.e., for any separable Banach space Y there exists a bounded linear operator from X onto Y.

Contents Lipschitz-free spaces in general Embedding of ℓ_{∞} into Lip₀(*M*) and ℓ_1 into $\mathcal{F}(M)$ Embeddings of ℓ_1 into a general Banach space *X*

Embedding of ℓ_{∞} into Lip₀(*M*) Embedding of ℓ_1 into $\mathcal{F}(M)$

Consequences of the isometric variant

Corollary

Let M be an infinite metric space. Then $\mathcal{F}(M)$ does not have a fixed point property.

イロト イ団ト イヨト イヨトー

Contents Lipschitz-free spaces in general Embedding of ℓ_{∞} into Lip₀(*M*) and ℓ_1 into $\mathcal{F}(M)$ Embeddings of ℓ_1 into a general Banach space *X*

Embedding of ℓ_{∞} into Lip₀(*M*) Embedding of ℓ_1 into $\mathcal{F}(M)$

Consequences of the isometric variant

Corollary

Let M be an infinite metric space. Then $\mathcal{F}(M)$ does not have a fixed point property.

Free space norm is quite rare. More precisely ...

< □ > < □ > < □ > < □ > < □ >

-

 $\label{eq:contents} Contents \\ Lipschitz-free spaces in general \\ Embedding of <math display="inline">\ell_{\infty}$ into Lip_(M) and ℓ_1 into $\mathcal{F}(M) \\ Embeddings of <math display="inline">\ell_1$ into a general Banach space X

Embedding of ℓ_{∞} into Lip₀(*M*) Embedding of ℓ_1 into $\mathcal{F}(M)$

Consequences of the isometric variant

Corollary

Let M be an infinite metric space. Then $\mathcal{F}(M)$ does not have a fixed point property.

Free space norm is quite rare. More precisely ...

Corollary

Let X be a Banach space. Denote by $\mathcal{P}_F(X)$ the set of equivalent norms $|\cdot|$ on X for which there is a metric space M with $\mathcal{F}(M)$ isometric with $(X, |\cdot|)$. Then $\mathcal{P}_F(X)$ is of first category in $\mathcal{P}(X)$ (i.e. in the space of all equivalent norms on X).

< □ > < □ > < □ > < □ > < □ >

Contents

Embedding of ℓ_{∞} into Lip₀(*M*) and ℓ_1 into $\mathcal{F}(M)$ Embeddings of ℓ_1 into a general Banach space *X* Embedding of ℓ_{∞} into Lip₀(*M*) Embedding of ℓ_1 into $\mathcal{F}(M)$

Embedding of ℓ_1 into $\mathcal{F}(M)$

The idea: Consider $e_n = \frac{\delta_{x_n} - \delta_{y_n}}{\rho(x_n, y_n)}$.

イロト イ団ト イヨト イヨトー

э.

Contents Lipschitz-free spaces in general Embedding of ℓ_{∞} into Lip₀(*M*) and ℓ_1 into $\mathcal{F}(M)$ Embeddings of ℓ_1 into a general Banach space *X*

Embedding of ℓ_{∞} into $\operatorname{Lip}_{0}(M)$ Embedding of ℓ_{1} into $\mathcal{F}(M)$

Embedding of ℓ_1 into $\mathcal{F}(M)$

The idea: Consider $e_n = \frac{\delta_{x_n} - \delta_{y_n}}{\rho(x_n, y_n)}$.

Our result: If the completion of *M* has an accumulation point or contains an infinite ultrametric space, then $\mathcal{F}(M)$ contains a 1-complemented subspace isometric to ℓ_1 .

< □ > < □ > < □ > < □ > < □ >

Embedding of ℓ_{∞} into $\operatorname{Lip}_{0}(M)$ Embedding of ℓ_{1} into $\mathcal{F}(M)$

Embedding of ℓ_1 into $\mathcal{F}(M)$

The idea: Consider $e_n = \frac{\delta_{x_n} - \delta_{y_n}}{\rho(x_n, y_n)}$.

Our result: If the completion of *M* has an accumulation point or contains an infinite ultrametric space, then $\mathcal{F}(M)$ contains a 1-complemented subspace isometric to ℓ_1 .

Question

Let M be a discrete metric space. Does $\mathcal{F}(M)$ contain a subspace isometric to ℓ_1 ?

Embedding of ℓ_{∞} into $\operatorname{Lip}_{0}(M)$ Embedding of ℓ_{1} into $\mathcal{F}(M)$

Embedding of ℓ_1 into $\mathcal{F}(M)$

The idea: Consider $e_n = \frac{\delta_{x_n} - \delta_{y_n}}{\rho(x_n, y_n)}$.

Our result: If the completion of *M* has an accumulation point or contains an infinite ultrametric space, then $\mathcal{F}(M)$ contains a 1-complemented subspace isometric to ℓ_1 .

Question

Let M be a discrete metric space. Does $\mathcal{F}(M)$ contain a subspace isometric to ℓ_1 ?

Our result which supports the answer "yes": If *M* has at least three points, then there are $e_1, e_2 \in \mathcal{F}(M)$ with $||e_1|| = ||e_2|| = 1$ and $||e_1 + e_2|| = 2$

(ロ) (同) (三) (三) (三) (○) (○)

Embedding of ℓ_{∞} into $\operatorname{Lip}_{0}(M)$ Embedding of ℓ_{1} into $\mathcal{F}(M)$

Embedding of ℓ_1 into $\mathcal{F}(M)$

The idea: Consider $e_n = \frac{\delta_{x_n} - \delta_{y_n}}{\rho(x_n, y_n)}$.

Our result: If the completion of *M* has an accumulation point or contains an infinite ultrametric space, then $\mathcal{F}(M)$ contains a 1-complemented subspace isometric to ℓ_1 .

Question

Let M be a discrete metric space. Does $\mathcal{F}(M)$ contain a subspace isometric to ℓ_1 ?

Our result which supports the answer "yes": If *M* has at least three points, then there are $e_1, e_2 \in \mathcal{F}(M)$ with $||e_1|| = ||e_2|| = 1$ and $||e_1 + e_2|| = 2$

(on the other hand, there are metric spaces $M = \{0, x, y\}$ such that ℓ_1^2 does not embed linearly isometrically into $\mathcal{F}(M)$).

Contents Lipschitz-free spaces in general Embedding of ℓ_{∞} into Lip₀(*M*) and ℓ_1 into $\mathcal{F}(M)$ Embeddings of ℓ_1 into a general Banach space *X*

Embeddings of ℓ_1 into a general Banach space X

< ロ > < 回 > < 回 > < 回 > < 回 > ...

Contents Lipschitz-free spaces in general Embedding of ℓ_{∞} into Lip₀(*M*) and ℓ_1 into $\mathcal{F}(M)$ Embeddings of ℓ_1 into a general Banach space *X*

The end

Thank you for your attention!

イロト イポト イヨト イヨト

æ

