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Lipschitz-free spaces in general Definition and universal property

Definitions

Setting: (M, p, 0) is a metric space with a distinguished point 0.
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Lipschitz-free spaces in general Definition and universal property

Definitions

Setting: (M, p, 0) is a metric space with a distinguished point 0.
- Lipg(M) := {f: M — R : fis Lipschitz and f(0) = 0},

- Lipy (M) with a norm ||f||Lip := sup {% S x#ye€ M} is a Banach
space,

-0 : M — Lipy(M)* is defined by 6(m)(f) := f(m) for m € M and f € Lip,(M).
It is isometric embedding.

Definition

Given (M, p, 0), we define the Lipschitz-free space over M by
F(M) :=span{é(m): m e M} C Lip,(M)".
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Lipschitz-free spaces in general Definition and universal property

Universal property

Proposition (Universal property)

Let (M, p,0) be as above, X a Banach space and L : M — X a Lipschitz
mapping with L(0) = 0. Then there is a unique linear operator L : F(M) — X
with L6 = L and ||L|| = ||L]|Lip-
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Corollaries:

- F(M)* is isometric to Lip,(M),
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Lipschitz-free spaces in general Definition and universal property

Universal property

Proposition (Universal property)

Let (M, p,0) be as above, X a Banach space and L : M — X a Lipschitz
mapping with L(0) = 0. Then there is a unique linear operator L : F(M) — X
with L6 = L and ||L|| = ||L]|Lip-

Corollaries:

- F(M)* is isometric to Lip,(M),

- In the following picture, all the arrows commute:

SHOW A PICTURE
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Embedding of £ into Llpo(M)
Embedding of £ into Lipg (M) and £4 into (M) Embedding of ¢4 into F (M)

Embedding of ¢ into Lipy(M)

First idea: Consider functions f,(x) = max{r — p(x, x»), 0} with disjoint
supports; i.e., U(xa, 1) are pairwise disjoint.
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Our result: If M is an infinite metric space, then Lip,(M) contains a
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Embedding of £ into Lipg (M)
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Embedding of ¢ into Lipy(M)

First idea: Consider functions f,(x) = max{r — p(x, x»), 0} with disjoint
supports; i.e., U(xa, 1) are pairwise disjoint.
Candidate for an embedding:

lo D (an)neN — Zanfn

neN

Our result: If M is an infinite metric space, then Lip,(M) contains a
subspace isometric t0 /.

Relation with the embedding of ¢; into F(M): [Bessaga, Petczynski]
loo = X* if and only if £, < X.
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Embedding of £ into Lipg (M)
Embedding of £ into Lipg (M) and £4 into (M) Embedding of £ into F (M)

Consequences of /o, — Lipy(M)

Let M be an infinite metric space. For the Banach space X = F(M), we have

(i) ¢4 <X , I.e., there is a complemented subspace of X isomorphic to ¢1.
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Consequences of /o, — Lipy(M)

Theorem

Let M be an infinite metric space. For the Banach space X = F(M), we have

(i) ¢4 <X , I.e., there is a complemented subspace of X isomorphic to ¢1.
From this we get

(i) X 72> C(K), i.e., X is not isomorphic to a complemented subspace of a
C(K) space.

(iiiy X™ is not weakly sequentially complete; in particular, X is not isomorphic
to L'-predual.
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Embedding of £ into Lipg (M)
Embedding of £ into Lipg (M) and £4 into (M) Embedding of £ into F (M)

Consequences of /o, — Lipy(M)

Theorem

Let M be an infinite metric space. For the Banach space X = F(M), we have

(i) ¢4 <X , I.e., there is a complemented subspace of X isomorphic to ¢1.
From this we get
(i) X 72> C(K), i.e., X is not isomorphic to a complemented subspace of a
C(K) space.
(iiiy X™ is not weakly sequentially complete; in particular, X is not isomorphic
to L'-predual.
(iv) X is not isomorphic to the Gurarii space.

(v) X is a projectively universal separable Banach space, i.e., for any
separable Banach space Y there exists a bounded linear operator from
XontoY.
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Consequences of the isometric variant

Let M be an infinite metric space. Then F(M) does not have a fixed point
property.
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Embedding of £ into Lipg (M)
Embedding of £ into Lipg (M) and £4 into (M) Embedding of ¢4 into F (M)

Consequences of the isometric variant

Let M be an infinite metric space. Then F(M) does not have a fixed point
property.

Free space norm is quite rare. More precisely ...

Let X be a Banach space. Denote by Pr(X) the set of equivalent norms | - |
on X for which there is a metric space M with F(M) isometric with (X, | - |).
Then Pe(X) is of first category in P(X) (i.e. in the space of all equivalent
norms on X).
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Embedding of £~ into Lipg (M)
Embedding of £ into Lipg (M) and £4 into (M) Embedding of £ into F (M)

Embedding of ¢4 into F(M)

. . ; — =0y
The idea: Consider e, = o(Xn,¥n) "
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Embedding of ¢4 into F(M)

. R . _ Sxp—Syn
The idea: Consider e, = 52—
Our result: If the completion of M has an accumulation point or contains an

infinite ultrametric space, then F(M) contains a 1-complemented subspace
isometric to ¢4.
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Embedding of ¢4 into F(M)

. R . _ Sxp—Syn
The idea: Consider e, = 52—
Our result: If the completion of M has an accumulation point or contains an

infinite ultrametric space, then F(M) contains a 1-complemented subspace
isometric to ¢4.

Let M be a discrete metric space. Does F(M) contain a subspace isometric
to /4 ?
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Embedding of ¢4 into F(M)

. R . _ Sxp—Syn
The idea: Consider e, = 52—
Our result: If the completion of M has an accumulation point or contains an

infinite ultrametric space, then F(M) contains a 1-complemented subspace
isometric to ¢4.

Let M be a discrete metric space. Does F(M) contain a subspace isometric
to /4 ?

Our result which supports the answer “yes”: If M has at least three
points, then there are ey, &2 € F(M) with ||e1]| = ||ez|]| = 1 and ||e1 + ez]| = 2
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Embedding of £~ into Lipg (M)
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Embedding of ¢4 into F(M)

. R . _ 5Xn*6}’n
The idea: Consider e, = o(Xn,Yn) *

Our result: If the completion of M has an accumulation point or contains an
infinite ultrametric space, then F(M) contains a 1-complemented subspace
isometric to ¢1.

Let M be a discrete metric space. Does F(M) contain a subspace isometric
to /4 ?

Our result which supports the answer “yes”: If M has at least three
points, then there are ey, &2 € F(M) with ||e1]| = ||ez|]| = 1 and ||e1 + ez]| = 2

(on the other hand, there are metric spaces M = {0, x, y} such that ¢2 does
not embed linearly isometrically into F7(M)).
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Embeddings of £ into a general Banach space X

Embeddings of /1 into a general Banach space X
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Embeddings of £ into a general Banach space X

The end

Thank you for your attention!
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