Metric characterization of Linear Operators S. Dilworth (joint work with Ryan Causey) Workshop in Analysis and Probability Texas A & M University

July, 2016

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Factoring through Spaces

For $n \ge 1$, the binary tree $B_n := \{\emptyset\} \cup_{i=1}^n \{0, 1\}^i$ is a finite metric space with the shortest path metric

$$d(s,t) = |s| + |t| - 2|u|$$

where u is the nearest common ancestor of s and t.

 $B_{\infty} = \bigcup_{n \ge 1} B_n$ is the infinite binary tree.

Theorem (Bourgain, 1986)

Let *X* be a Banach space. Then *X* is not superreflexive $\Leftrightarrow \exists D \ge 1$ and maps $f_n \colon B_n \to X$ such that

$$\frac{d(s,t)}{D} \leqslant \|f_n(s) - f_n(t)\| \leqslant d(s,t).$$

Theorem (Baudier, 2007)

X is not superreflexive $\Leftrightarrow \exists D \ge 1$ and a map $f: B_{\infty} \to X$ such that

$$\frac{d(s,t)}{D} \leqslant \|f(s) - f(t)\| \leqslant d(s,t).$$

Factoring through Spaces

For $n \ge 1$, the binary tree $B_n := \{\emptyset\} \cup_{i=1}^n \{0, 1\}^i$ is a finite metric space with the shortest path metric

$$d(s,t) = |s| + |t| - 2|u|$$

where u is the nearest common ancestor of s and t.

 $B_{\infty} = \bigcup_{n \ge 1} B_n$ is the infinite binary tree.

Theorem (Bourgain, 1986)

Let *X* be a Banach space. Then *X* is not superreflexive $\Leftrightarrow \exists D \ge 1$ and maps $f_n \colon B_n \to X$ such that

$$\frac{d(s,t)}{D} \leqslant \|f_n(s) - f_n(t)\| \leqslant d(s,t).$$

Theorem (Baudier, 2007)

X is not superreflexive $\Leftrightarrow \exists D \ge 1$ and a map $f : B_{\infty} \to X$ such that

$$\frac{d(s,t)}{D} \leqslant \|f(s) - f(t)\| \leqslant d(s,t).$$

Let $A: X \to Y$ be a linear operator between Banach spaces. Definition Let \mathcal{M} be a family of metric spaces (M, d). Then \mathcal{M} factors through A if $\exists D \ge 1$ s.t. $\forall M \in \mathcal{M} \exists f \colon M \to X$

 $\|f(s)-f(t)\| \leq d(s,t)$ and $\|Af(s)-Af(t)\| \geq \frac{d(s,t)}{D}$.

Note that

$$\|f(s)-f(t)\| \geq \frac{1}{\|A\|} \|Af(s)-Af(t)\| \geq \frac{1}{\|A\|D} d(s,t)$$

and

$$\|Af(s) - Af(t)\| \leq \|A\| \|f(s) - f(t)\| \leq \|A\| d(s, t).$$

(日) (日) (日) (日) (日) (日) (日)

Super weakly compact operators

Definition

Let A: X → Y and A₁: X₁ → Y₁ be continuous linear operators. Then A₁ is finitely representable in A if ∀ε > 0 and ∀ finite-dimensional subspaces E₁ ⊂ X₁, ∃E ⊂ X, isomorphisms U: E₁ → E, V: A₁(E₁) → A(E) such that ||U|||U⁻¹|| < 1 + ε, ||V|||V⁻¹|| < 1 + ε, and</p>

$$E_{1} \xrightarrow{A_{1}} A_{1}(E_{1})$$

$$\downarrow U \qquad \qquad \downarrow V$$

$$E \xrightarrow{A} A(E)$$

- A: X → Y is super weakly compact if A₁: X₁ → Y₁ is weakly compact whenever A₁ is finitely representable in A
- X is super-reflexive if $I: X \rightarrow X$ is super weakly compact.

Operator versions of the results for spaces

Theorem

A is not super weakly compact \Leftrightarrow the D_n 's factor through A

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem

A is not super weakly compact $\Leftrightarrow D_{\infty}$ factors through A

Uniform Convexity

Definition *X* is uniformly convex (UC) if $\forall \varepsilon > 0 \exists \delta > 0$ such that $\forall x, y \in B_X$ with $||x - y|| \ge \varepsilon$, then

$$\left\|\frac{x+y}{2}\right\| \leqslant 1-\delta.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (Enflo, '73)

If X is superreflexive then X is uniformly convexifiable.

Ingredients of the proof

Kloeckner's ('14) short self-improvement argument and Beauzamy's operator version of Enflo's renorming theorem.

Theorem (Beauzamy, '76)

A: $X \to Y$ is super weakly compact $\Leftrightarrow X$ admits an equivalent norm $|\cdot|$ such that A is uniformly convexifying, i.e. $\forall \varepsilon > 0 \exists \delta > 0$ such that $\forall x, y \in B_X$

$$\|Ax - Ay\| \ge \varepsilon \Rightarrow |\frac{x + y}{2}| \le 1 - \delta.$$

The converse uses James's characterizations of weak compactness.

Theorem (James '72)

A: $X \to Y$ is not weakly compact $\Leftrightarrow \exists (x_n) \subset B_X$ and $\theta > 0$ such that (Ax_n) is a basic sequence and

$$\|\sum_{n\in B} Ax_n\| \ge \theta |B| \qquad (B \subset \mathbb{N} \text{ finite})$$

Ingredients of the proof

Kloeckner's ('14) short self-improvement argument and Beauzamy's operator version of Enflo's renorming theorem.

Theorem (Beauzamy, '76)

A: $X \to Y$ is super weakly compact $\Leftrightarrow X$ admits an equivalent norm $|\cdot|$ such that A is uniformly convexifying, i.e. $\forall \varepsilon > 0 \exists \delta > 0$ such that $\forall x, y \in B_X$

$$\|Ax - Ay\| \ge \varepsilon \Rightarrow |\frac{x + y}{2}| \le 1 - \delta.$$

The converse uses James's characterizations of weak compactness.

Theorem (James '72)

A: $X \to Y$ is not weakly compact $\Leftrightarrow \exists (x_n) \subset B_X$ and $\theta > 0$ such that (Ax_n) is a basic sequence and

$$\|\sum_{n\in B} Ax_n\| \ge \theta |B| \qquad (B\subset \mathbb{N} \text{ finite})$$

Asymptotic Versions: Property (β) of Rolewicz

Lemma

Suppose X is uniformly convex. If $x, y, z \in B_X$ and $||y - z|| \ge \varepsilon$ then

$$\min(\|x+y\|,\|x+z\|) \leq 2-2\delta(\varepsilon/2).$$

Proof.

Either $||x - y|| \ge \varepsilon/2$ or $||x - z|| \ge \varepsilon/2$. Suppose the latter. Then

$$\|x+y\| \leq 2(1-\delta(\varepsilon/2)).$$

Definition (Kutzarova, '91)

X has property β of Rolewicz if $\forall \varepsilon > 0 \exists \delta > 0 \forall x \in B_X \forall (x_n) \subset B_X$, with $\inf_{m \neq n} ||x_m - x_n|| \ge \varepsilon$, we have

$$\inf_{n \ge 1} \|x - x_n\| \le 2 - \delta.$$

Asymptotic Versions: Property (β) of Rolewicz

Lemma

Suppose X is uniformly convex. If $x, y, z \in B_X$ and $||y - z|| \ge \varepsilon$ then

$$\min(\|x+y\|,\|x+z\|) \leq 2 - 2\delta(\varepsilon/2).$$

Proof.

Either $||x - y|| \ge \varepsilon/2$ or $||x - z|| \ge \varepsilon/2$. Suppose the latter. Then

$$\|\mathbf{x}+\mathbf{y}\| \leq 2(1-\delta(\varepsilon/2)).$$

Definition (Kutzarova, '91)

X has property β of Rolewicz if $\forall \varepsilon > 0 \exists \delta > 0 \forall x \in B_X \forall (x_n) \subset B_X$, with $\inf_{m \neq n} ||x_m - x_n|| \ge \varepsilon$, we have

$$\inf_{n \ge 1} \|x - x_n\| \le 2 - \delta.$$

Comparison of UC and the β property

For $1 , <math>(\sum_{n=1}^{\infty} \ell_{\infty}^{n})_{\ell_{p}}$ has (β) but is not uniformly convexifiable.

Similarities

- $UC \Rightarrow (\beta) \Rightarrow reflexive.$
- (β) passes to subspaces and quotients.
- X is (β)-able \Leftrightarrow X^{*} is (β)-able.
- (β)-ability is inherited by uniform nonlinear quotients (D-Kutzarova-Randrianarivony, '16)
- A reflexive space X is (β)-able ⇔ X is asymptotically uniformly convexifiable and asymptotically uniformly smoothable.

The referee of a recent paper suggested the term asymptotically superreflexive for (β) -able.

Comparison of UC and the β property

For $1 , <math>(\sum_{n=1}^{\infty} \ell_{\infty}^{n})_{\ell_{p}}$ has (β) but is not uniformly convexifiable.

Similarities

- $UC \Rightarrow (\beta) \Rightarrow reflexive.$
- (β) passes to subspaces and quotients.
- X is (β) -able \Leftrightarrow X^{*} is (β) -able.
- (β)-ability is inherited by uniform nonlinear quotients (D-Kutzarova-Randrianarivony, '16)
- A reflexive space X is (β)-able ⇔ X is asymptotically uniformly convexifiable and asymptotically uniformly smoothable.

The referee of a recent paper suggested the term asymptotically superreflexive for (β)-able.

Comparison of UC and the β property

For $1 , <math>(\sum_{n=1}^{\infty} \ell_{\infty}^{n})_{\ell_{p}}$ has (β) but is not uniformly convexifiable.

Similarities

- $UC \Rightarrow (\beta) \Rightarrow reflexive.$
- (β) passes to subspaces and quotients.
- X is (β) -able \Leftrightarrow X^{*} is (β) -able.
- (β)-ability is inherited by uniform nonlinear quotients (D-Kutzarova-Randrianarivony, '16)
- A reflexive space X is (β)-able ⇔ X is asymptotically uniformly convexifiable and asymptotically uniformly smoothable.

The referee of a recent paper suggested the term asymptotically superreflexive for (β)-able.

Szlenk index

Let $K \subset X^*$ be w^* -compact and let $\varepsilon > 0$.

The Szlenk derivation is defined by

 $s_{\varepsilon}(K) = K \setminus \cup \{V \colon V \text{ } w^*\text{-open}, \operatorname{diam}(V \cap K) \leqslant \varepsilon\}$

• Let $s_{\varepsilon}^{0}(K) = K$. If ξ is an ordinal, define

$$s_{\varepsilon}^{\xi_+1}(K) = s_{\varepsilon}(s_{\varepsilon}^{\xi}(K)).$$

If ξ is a limit ordinal, define

$$s_{\varepsilon}^{\xi}(K) = \cap_{\zeta < \xi} s_{\varepsilon}^{\zeta}(K).$$

 $\mathsf{Sz}(K,\varepsilon) = \begin{cases} \min\{\xi \colon s_{\varepsilon}^{\xi}(K) = \emptyset\}, & \text{if the set is nonempty} \\ \infty, & \text{otherwise} \end{cases}$

►
$$Sz(K) = sup_{\varepsilon>0} Sz(K, \varepsilon)$$

・ロト・(四ト・(川下・(日下))

Asymptotic Results: Space Results Finally, the Szlenk index of X is defined as $Sz(X) := Sz(B_{X^*})$.

Let $T_n := \{\emptyset\} \cup_{i=1}^n \mathbb{N}^i$ with the tree metric: infinitely branching tree of depth *n*.

Theorem (Baudier-Kalton-Lancien, '10) If $Sz(X) > \omega$ or $Sz(X^*) > \omega$ then the T_n 's embed with uniform distortion into X and X*.

Theorem (Baudier-Kalton-Lancien '10) If X is reflexive, $Sz(X) = \omega$, and $Sz(X^*) = \omega$, then the T_n 's do not embed with uniform distortion into X.

To extend these results to operators we also extend the following result. This is the asymptotic version of Enflo's renorming theorem

Theorem (D-Kutzarova-Lancien-Randrianarivony, '16) X admits an equivalent norm with property (β) of Rolewicz \Leftrightarrow X is reflexive, Sz(X) = ω , and Sz(X*) = ω ,

Finally, the Szlenk index of X is defined as $Sz(X) := Sz(B_{X^*})$.

Let $T_n := \{\emptyset\} \cup_{i=1}^n \mathbb{N}^i$ with the tree metric: infinitely branching tree of depth *n*.

Theorem (Baudier-Kalton-Lancien, '10)

If $Sz(X) > \omega$ or $Sz(X^*) > \omega$ then the T_n 's embed with uniform distortion into X and X^* .

Theorem (Baudier-Kalton-Lancien '10)

If X is reflexive, $Sz(X) = \omega$, and $Sz(X^*) = \omega$, then the T_n 's do not embed with uniform distortion into X.

To extend these results to operators we also extend the following result. This is the asymptotic version of Enflo's renorming theorem

Theorem (D-Kutzarova-Lancien-Randrianarivony, '16) X admits an equivalent norm with property (β) of Rolewicz \Leftrightarrow X is reflexive, Sz(X) = ω , and Sz(X*) = ω ,

Finally, the Szlenk index of X is defined as $Sz(X) := Sz(B_{X^*})$.

Let $T_n := \{\emptyset\} \cup_{i=1}^n \mathbb{N}^i$ with the tree metric: infinitely branching tree of depth *n*.

Theorem (Baudier-Kalton-Lancien, '10)

If $Sz(X) > \omega$ or $Sz(X^*) > \omega$ then the T_n 's embed with uniform distortion into X and X^* .

Theorem (Baudier-Kalton-Lancien '10)

If X is reflexive, $Sz(X) = \omega$, and $Sz(X^*) = \omega$, then the T_n 's do not embed with uniform distortion into X.

To extend these results to operators we also extend the following result. This is the asymptotic version of Enflo's renorming theorem

Theorem (D-Kutzarova-Lancien-Randrianarivony, '16)

X admits an equivalent norm with property (β) of Rolewicz \Leftrightarrow *X* is reflexive, Sz(*X*) = ω , and Sz(*X*^{*}) = ω ,

Finally, the Szlenk index of X is defined as $Sz(X) := Sz(B_{X^*})$.

Let $T_n := \{\emptyset\} \cup_{i=1}^n \mathbb{N}^i$ with the tree metric: infinitely branching tree of depth *n*.

Theorem (Baudier-Kalton-Lancien, '10)

If $Sz(X) > \omega$ or $Sz(X^*) > \omega$ then the T_n 's embed with uniform distortion into X and X^* .

Theorem (Baudier-Kalton-Lancien '10) If X is reflexive, $Sz(X) = \omega$, and $Sz(X^*) = \omega$, then the T_n 's do not embed with uniform distortion into X.

To extend these results to operators we also extend the following result. This is the asymptotic version of Enflo's renorming theorem

Theorem (D-Kutzarova-Lancien-Randrianarivony, '16)

X admits an equivalent norm with property (β) of Rolewicz \Leftrightarrow *X* is reflexive, Sz(*X*) = ω , and Sz(*X*^{*}) = ω ,

Finally, the Szlenk index of X is defined as $Sz(X) := Sz(B_{X^*})$.

Let $T_n := \{\emptyset\} \cup_{i=1}^n \mathbb{N}^i$ with the tree metric: infinitely branching tree of depth *n*.

Theorem (Baudier-Kalton-Lancien, '10)

If $Sz(X) > \omega$ or $Sz(X^*) > \omega$ then the T_n 's embed with uniform distortion into X and X^* .

Theorem (Baudier-Kalton-Lancien '10)

If X is reflexive, $Sz(X) = \omega$, and $Sz(X^*) = \omega$, then the T_n 's do not embed with uniform distortion into X.

To extend these results to operators we also extend the following result. This is the asymptotic version of Enflo's renorming theorem

Theorem (D-Kutzarova-Lancien-Randrianarivony, '16) X admits an equivalent norm with property (β) of Rolewicz \Leftrightarrow X is reflexive, Sz(X) = ω , and Sz(X*) = ω ,

Operator Versions

Definition

Let $A: X \to Y$ be a linear operator. The Szlenk index of A is defined as $Sz(A) = Sz(A^*(B_{Y^*}))$.

Theorem

If $Sz(A) > \omega$ or $Sz(A^*) > \omega$ then the T_n 's factor through A and A^* .

Definition

Let $A: X \to Y$.

► A has property (β) if $\forall \varepsilon > 0 \exists \delta > 0 \forall x \in B_X \forall (x_n) \subset B_X$, with $\inf_{m \neq n} ||Ax_m - Ax_n|| \ge \varepsilon$, we have

$$\inf_{n\geq 1}\|x-x_n\|\leqslant 2-\delta.$$

(日) (日) (日) (日) (日) (日) (日)

- A is (β)-able if X admits an equivalent norm | · | such that A: (X, | · |) → Y has property (β).
- X is β -able if $I: X \to X$ is (β)-able.

Operator Versions

Definition

Let $A: X \to Y$ be a linear operator. The Szlenk index of A is defined as $Sz(A) = Sz(A^*(B_{Y^*}))$.

Theorem

If $Sz(A) > \omega$ or $Sz(A^*) > \omega$ then the T_n 's factor through A and A^* .

Definition Let $A: X \to Y$

► A has property (β) if $\forall \varepsilon > 0 \exists \delta > 0 \forall x \in B_X \forall (x_n) \subset B_X$, with $\inf_{m \neq n} ||Ax_m - Ax_n|| \ge \varepsilon$, we have

$$\inf_{n\geq 1}\|x-x_n\|\leqslant 2-\delta.$$

(日) (日) (日) (日) (日) (日) (日)

- A is (β)-able if X admits an equivalent norm | · | such that A: (X, | · |) → Y has property (β).
- X is β -able if $I: X \to X$ is (β)-able.

Operator Versions

Definition

Let $A: X \to Y$ be a linear operator. The Szlenk index of A is defined as $Sz(A) = Sz(A^*(B_{Y^*}))$.

Theorem

If $Sz(A) > \omega$ or $Sz(A^*) > \omega$ then the T_n 's factor through A and A^* .

Definition

Let $A: X \to Y$.

► A has property (β) if $\forall \varepsilon > 0 \exists \delta > 0 \forall x \in B_X \forall (x_n) \subset B_X$, with $\inf_{m \neq n} ||Ax_m - Ax_n|| \ge \varepsilon$, we have

$$\inf_{n\geq 1}\|x-x_n\|\leqslant 2-\delta.$$

- A is (β)-able if X admits an equivalent norm | · | such that A: (X, | · |) → Y has property (β).
- X is β -able if $I: X \to X$ is (β)-able.

Theorem

A is (β) -able \Leftrightarrow A is weakly compact, $(Sz)(A) = \omega$, and $(Sz)(A^*) = \omega$.

Remark

This is the asymptotic version of Beauzamy's renorming theorem

Theorem

If A is (β)-able then the T'_ns do not factor through A

Remark

The proof uses the self-improvement argument as in [Baudier-Zhang, '15].

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

A is (β) -able \Leftrightarrow A is weakly compact, $(Sz)(A) = \omega$, and $(Sz)(A^*) = \omega$.

Remark

This is the asymptotic version of Beauzamy's renorming theorem

Theorem

If A is (β)-able then the T'_ns do not factor through A

Remark

The proof uses the self-improvement argument as in [Baudier-Zhang, '15].

(ロ) (同) (三) (三) (三) (○) (○)

Remark

Our renorming results use techniques and results from [Lancien-Prochazka-Raja, '15] on higher order asymptotic uniform convexity.