Metric characterization of Linear Operators S. Dilworth
(joint work with Ryan Causey)
Workshop in Analysis and Probability
Texas A \& M University

July, 2016

Factoring through Spaces

For $n \geqslant 1$, the binary tree $B_{n}:=\{\emptyset\} \cup \cup_{i=1}^{n}\{0,1\}^{i}$ is a finite metric space with the shortest path metric

$$
d(s, t)=|s|+|t|-2|u|
$$

where u is the nearest common ancestor of s and t.
$B_{\infty}=\cup_{n \geqslant 1} B_{n}$ is the infinite binary tree.
Theorem (Bourgain, 1986)
Let X be a Banach space. Then X is not superreflexive $\Leftrightarrow \exists D \geqslant 1$ and maps $f_{n}: B_{n} \rightarrow X$ such that

$$
\frac{d(s, t)}{D} \leqslant\left\|f_{n}(s)-f_{n}(t)\right\| \leqslant d(s, t) .
$$

Theorem (Baudier, 2007) X is not superreflexive $\Leftrightarrow \exists D \geqslant 1$ and a map $f: B_{\infty} \rightarrow X$ such that

Factoring through Spaces

For $n \geqslant 1$, the binary tree $B_{n}:=\{\emptyset\} \cup \cup_{i=1}^{n}\{0,1\}^{i}$ is a finite metric space with the shortest path metric

$$
d(s, t)=|s|+|t|-2|u|
$$

where u is the nearest common ancestor of s and t.
$B_{\infty}=\cup_{n \geqslant 1} B_{n}$ is the infinite binary tree.
Theorem (Bourgain, 1986)
Let X be a Banach space. Then X is not superreflexive $\Leftrightarrow \exists D \geqslant 1$ and maps $f_{n}: B_{n} \rightarrow X$ such that

$$
\frac{d(s, t)}{D} \leqslant\left\|f_{n}(s)-f_{n}(t)\right\| \leqslant d(s, t) .
$$

Theorem (Baudier, 2007)
X is not superreflexive $\Leftrightarrow \exists D \geqslant 1$ and a map $f: B_{\infty} \rightarrow X$ such that

$$
\frac{d(s, t)}{D} \leqslant\|f(s)-f(t)\| \leqslant d(s, t) .
$$

Let $A: X \rightarrow Y$ be a linear operator between Banach spaces.

Definition

Let \mathcal{M} be a family of metric spaces (M, d). Then \mathcal{M} factors through A if $\exists D \geqslant 1$ s.t. $\forall M \in \mathcal{M} \exists f: M \rightarrow X$

$$
\|f(s)-f(t)\| \leqslant d(s, t) \quad \text { and } \quad\|A f(s)-A f(t)\| \geqslant \frac{d(s, t)}{D}
$$

Note that

$$
\|f(s)-f(t)\| \geqslant \frac{1}{\|A\|}\|A f(s)-A f(t)\| \geqslant \frac{1}{\|A\| D} d(s, t)
$$

and

$$
\|A f(s)-A f(t)\| \leqslant\|A\|\|f(s)-f(t)\| \leqslant\|A\| d(s, t)
$$

Super weakly compact operators

Definition

- Let $A: X \rightarrow Y$ and $A_{1}: X_{1} \rightarrow Y_{1}$ be continuous linear operators. Then A_{1} is finitely representable in A if $\forall \varepsilon>0$ and \forall finite-dimensional subspaces $E_{1} \subset X_{1}, \exists E \subset X$, isomorphisms $U: E_{1} \rightarrow E, V: A_{1}\left(E_{1}\right) \rightarrow A(E)$ such that $\|U\|\left\|U^{-1}\right\|<1+\varepsilon,\|V\|\left\|V^{-1}\right\|<1+\varepsilon$, and

$$
\begin{aligned}
& E_{1} \xrightarrow{A_{1}} A_{1}\left(E_{1}\right) \\
& \downarrow u \quad \downarrow \\
& E \xrightarrow{A} A(E)
\end{aligned}
$$

- A: $X \rightarrow Y$ is super weakly compact if $A_{1}: X_{1} \rightarrow Y_{1}$ is weakly compact whenever A_{1} is finitely representable in A
- X is super-reflexive if $I: X \rightarrow X$ is super weakly compact.

Operator versions of the results for spaces

Theorem
A is not super weakly compact \Leftrightarrow the D_{n} 's factor through A
Theorem
A is not super weakly compact $\Leftrightarrow D_{\infty}$ factors through A

Uniform Convexity

Definition
X is uniformly convex (UC) if $\forall \varepsilon>0 \exists \delta>0$ such that $\forall x, y \in B_{X}$ with $\|x-y\| \geqslant \varepsilon$, then

$$
\left\|\frac{x+y}{2}\right\| \leqslant 1-\delta
$$

Theorem (Enflo, '73)
If X is superreflexive then X is uniformly convexifiable.

Ingredients of the proof

Kloeckner's ('14) short self-improvement argument and Beauzamy's operator version of Enflo's renorming theorem.
Theorem (Beauzamy, '76)
$A: X \rightarrow Y$ is super weakly compact $\Leftrightarrow X$ admits an equivalent norm $|\cdot|$ such that A is uniformly convexifying, i.e. $\forall \varepsilon>0 \exists \delta>0$ such that $\forall x, y \in B_{X}$

$$
\|A x-A y\| \geqslant \varepsilon \Rightarrow\left|\frac{x+y}{2}\right| \leqslant 1-\delta
$$

The converse uses James's characterizations of weak
compactness.
Theorem (James '72)
$A: X \rightarrow Y$ is not weakly compact $\Leftrightarrow \exists\left(x_{n}\right) \subset B_{X}$ and $\theta>0$ such
that $\left(A x_{n}\right)$ is a basic sequence and

$$
\left\|\sum A x_{n}\right\| \geqslant \theta|B| \quad(B \subset \mathbb{N} \text { finite })
$$

Ingredients of the proof

Kloeckner's ('14) short self-improvement argument and Beauzamy's operator version of Enflo's renorming theorem.
Theorem (Beauzamy, '76)
$A: X \rightarrow Y$ is super weakly compact $\Leftrightarrow X$ admits an equivalent norm $|\cdot|$ such that A is uniformly convexifying, i.e. $\forall \varepsilon>0 \exists \delta>0$ such that $\forall x, y \in B_{X}$

$$
\|A x-A y\| \geqslant \varepsilon \Rightarrow\left|\frac{x+y}{2}\right| \leqslant 1-\delta
$$

The converse uses James's characterizations of weak compactness.
Theorem (James '72)
$A: X \rightarrow Y$ is not weakly compact $\Leftrightarrow \exists\left(x_{n}\right) \subset B_{X}$ and $\theta>0$ such that $\left(A x_{n}\right)$ is a basic sequence and

$$
\left\|\sum_{n \in B} A x_{n}\right\| \geqslant \theta|B| \quad(B \subset \mathbb{N} \text { finite })
$$

Asymptotic Versions: Property (β) of Rolewicz

Lemma
Suppose X is uniformly convex. If $x, y, z \in B_{X}$ and $\|y-z\| \geqslant \varepsilon$ then

$$
\min (\|x+y\|,\|x+z\|) \leqslant 2-2 \delta(\varepsilon / 2) .
$$

Proof.
Either $\|x-y\| \geqslant \varepsilon / 2$ or $\|x-z\| \geqslant \varepsilon / 2$. Suppose the latter. Then

$$
\|x+y\| \leqslant 2(1-\delta(\varepsilon / 2)) .
$$

Definition (Kutzarova, '91)
X has property β of Rolewicz if
$\forall \varepsilon>0 \exists \delta>0 \forall x \in B_{X} \forall\left(x_{n}\right) \subset B_{X}$, with inf $_{m \neq n}\left\|x_{m}-x_{n}\right\| \geqslant \varepsilon$,
we have

Asymptotic Versions: Property (β) of Rolewicz

Lemma
Suppose X is uniformly convex. If $x, y, z \in B_{X}$ and $\|y-z\| \geqslant \varepsilon$ then

$$
\min (\|x+y\|,\|x+z\|) \leqslant 2-2 \delta(\varepsilon / 2) .
$$

Proof.
Either $\|x-y\| \geqslant \varepsilon / 2$ or $\|x-z\| \geqslant \varepsilon / 2$. Suppose the latter. Then

$$
\|x+y\| \leqslant 2(1-\delta(\varepsilon / 2)) .
$$

Definition (Kutzarova, '91)
X has property β of Rolewicz if
$\forall \varepsilon>0 \exists \delta>0 \forall x \in B_{X} \forall\left(x_{n}\right) \subset B_{X}$, with $\inf _{m \neq n}\left\|x_{m}-x_{n}\right\| \geqslant \varepsilon$,
we have

$$
\inf _{n \geqslant 1}\left\|x-x_{n}\right\| \leqslant 2-\delta .
$$

Comparison of UC and the β property

For $1<p<\infty,\left(\sum_{n=1}^{\infty} \ell_{\infty}^{n}\right)_{\ell_{p}}$ has (β) but is not uniformly convexifiable.

Similarities

> - $U C \Rightarrow(\beta) \Rightarrow$ reflexive.
> - (β) passes to subspaces and quotients.
> - X is (β)-able $\Leftrightarrow X^{*}$ is (β)-able.
> - (β)-ability is inherited by uniform nonlinear quotients (D-Kutzarova-Randrianarivony, '16)
> - A reflexive space X is (β)-able $\Leftrightarrow X$ is asymptotically uniformly convexifiable and asymptotically uniformly smoothable.

The referee of a recent naner suggested the term asymptotically superreflexive for (β)-able.

Comparison of UC and the β property

For $1<p<\infty,\left(\sum_{n=1}^{\infty} \ell_{\infty}^{n}\right)_{\ell_{p}}$ has (β) but is not uniformly convexifiable.

Similarities

- $U C \Rightarrow(\beta) \Rightarrow$ reflexive.
- (β) passes to subspaces and quotients.
- X is (β)-able $\Leftrightarrow X^{*}$ is (β)-able.
- (β)-ability is inherited by uniform nonlinear quotients (D-Kutzarova-Randrianarivony, '16)
- A reflexive space X is (β)-able $\Leftrightarrow X$ is asymptotically uniformly convexifiable and asymptotically uniformly smoothable.

The referee of a recent paper suggested the term asymptotically superreflexive for (β)-able.

Comparison of UC and the β property

For $1<p<\infty,\left(\sum_{n=1}^{\infty} \ell_{\infty}^{n}\right)_{\ell_{p}}$ has (β) but is not uniformly convexifiable.

Similarities

- $U C \Rightarrow(\beta) \Rightarrow$ reflexive.
- (β) passes to subspaces and quotients.
- X is (β)-able $\Leftrightarrow X^{*}$ is (β)-able.
- (β)-ability is inherited by uniform nonlinear quotients (D-Kutzarova-Randrianarivony, '16)
- A reflexive space X is (β)-able $\Leftrightarrow X$ is asymptotically uniformly convexifiable and asymptotically uniformly smoothable.

The referee of a recent paper suggested the term asymptotically superreflexive for (β)-able.

Szlenk index

Let $K \subset X^{*}$ be w^{*}-compact and let $\varepsilon>0$.

- The Szlenk derivation is defined by

$$
s_{\varepsilon}(K)=K \backslash \cup\left\{V: V w^{*} \text {-open, } \operatorname{diam}(V \cap K) \leqslant \varepsilon\right\}
$$

- Let $s_{\varepsilon}^{0}(K)=K$. If ξ is an ordinal, define

$$
s_{\varepsilon}^{\xi+1}(K)=s_{\varepsilon}\left(s_{\varepsilon}^{\xi}(K)\right)
$$

If ξ is a limit ordinal, define

$$
\boldsymbol{s}_{\varepsilon}^{\xi}(K)=\cap_{\zeta<\xi} \boldsymbol{s}_{\varepsilon}^{\zeta}(K)
$$

$$
\operatorname{Sz}(K, \varepsilon)= \begin{cases}\min \left\{\xi: \boldsymbol{s}_{\varepsilon}^{\xi}(K)=\emptyset\right\}, & \text { if the set is nonempty } \\ \infty, & \text { otherwise }\end{cases}
$$

- $\operatorname{Sz}(K)=\sup _{\varepsilon>0} \operatorname{Sz}(K, \varepsilon)$

Asymptotic Results: Space Results

Finally, the Szlenk index of X is defined as $\mathrm{Sz}(X):=S z\left(B_{X^{*}}\right)$. Let $T_{n}:=\{\emptyset\} \cup_{i=1}^{n} \mathbb{N}^{i}$ with the tree metric: infinitely branching tree of depth n.

Asymptotic Results: Space Results

Finally, the Szlenk index of X is defined as $\operatorname{Sz}(X):=S z\left(B_{X^{*}}\right)$. Let $T_{n}:=\{\emptyset\} \cup_{i=1}^{n} \mathbb{N}^{i}$ with the tree metric: infinitely branching tree of depth n.

Theorem (Baudier-Kalton-Lancien, '10)
If $\mathrm{Sz}(X)>\omega$ or $\mathrm{Sz}\left(X^{*}\right)>\omega$ then the T_{n} 's embed with uniform
distortion into X and X^{*}

Asymptotic Results: Space Results

Finally, the Szlenk index of X is defined as $\operatorname{Sz}(X):=S z\left(B_{X^{*}}\right)$.
Let $T_{n}:=\{\emptyset\} \cup_{i=1}^{n} \mathbb{N}^{i}$ with the tree metric: infinitely branching tree of depth n.

Theorem (Baudier-Kalton-Lancien, '10) If $\mathrm{Sz}(X)>\omega$ or $\mathrm{Sz}\left(X^{*}\right)>\omega$ then the T_{n} 's embed with uniform distortion into X and X^{*}.

Theorem (Baudier-Kalton-Lancien '10)
If X is reflexive, $\mathrm{Sz}(X)=\omega$, and $\mathrm{Sz}\left(X^{*}\right)=\omega$, then the T_{n} 's do not embed with uniform distortion into X.

To extend these results to operators we also extend the following result. This is the asymptotic version of Enflo's renorming theorem

Asymptotic Results: Space Results

Finally, the Szlenk index of X is defined as $\operatorname{Sz}(X):=S z\left(B_{X^{*}}\right)$.
Let $T_{n}:=\{\emptyset\} \cup_{i=1}^{n} \mathbb{N}^{i}$ with the tree metric: infinitely branching tree of depth n.

Theorem (Baudier-Kalton-Lancien, '10) If $\mathrm{Sz}(X)>\omega$ or $\mathrm{Sz}\left(X^{*}\right)>\omega$ then the T_{n} 's embed with uniform distortion into X and X^{*}.

Theorem (Baudier-Kalton-Lancien '10) If X is reflexive, $\mathrm{Sz}(X)=\omega$, and $\mathrm{Sz}\left(X^{*}\right)=\omega$, then the T_{n} 's do not embed with uniform distortion into X.

To extend these results to operators we also extend the following result. This is the asymptotic version of Enflo's renorming theorem
\square

Asymptotic Results: Space Results

Finally, the Szlenk index of X is defined as $\operatorname{Sz}(X):=S z\left(B_{X^{*}}\right)$.
Let $T_{n}:=\{\emptyset\} \cup_{i=1}^{n} \mathbb{N}^{i}$ with the tree metric: infinitely branching tree of depth n.

Theorem (Baudier-Kalton-Lancien, '10)
If $\mathrm{Sz}(X)>\omega$ or $\mathrm{Sz}\left(X^{*}\right)>\omega$ then the T_{n} 's embed with uniform distortion into X and X^{*}.

Theorem (Baudier-Kalton-Lancien '10) If X is reflexive, $\mathrm{Sz}(X)=\omega$, and $\mathrm{Sz}\left(X^{*}\right)=\omega$, then the T_{n} 's do not embed with uniform distortion into X.

To extend these results to operators we also extend the following result. This is the asymptotic version of Enflo's renorming theorem
Theorem (D-Kutzarova-Lancien-Randrianarivony, '16) X admits an equivalent norm with property (β) of Rolewicz $\Leftrightarrow X$ is reflexive, $\mathrm{Sz}(X)=\omega$, and $\mathrm{Sz}\left(X^{*}\right)=\omega$,

Operator Versions

Definition

Let $A: X \rightarrow Y$ be a linear operator. The Szlenk index of A is defined as $\operatorname{Sz}(A)=S z\left(A^{*}\left(B_{Y^{*}}\right)\right)$.

Operator Versions

Definition

Let $A: X \rightarrow Y$ be a linear operator. The Szlenk index of A is defined as $\operatorname{Sz}(A)=S z\left(A^{*}\left(B_{Y *}\right)\right)$.
Theorem If $\mathrm{Sz}(A)>\omega$ or $\mathrm{Sz}\left(A^{*}\right)>\omega$ then the T_{n} 's factor through A and A^{*}.

Let $A: X \rightarrow Y$.

- A has property (B) if $\forall \varepsilon>0 \exists \delta>0 \forall x \in B_{X} \forall\left(X_{n}\right) \subset B_{X}$, with inf $_{m \neq n}\left\|A x_{m}-A x_{n}\right\| \geqslant \varepsilon$, we have

Operator Versions

Definition

Let $A: X \rightarrow Y$ be a linear operator. The Szlenk index of A is defined as $\operatorname{Sz}(A)=S z\left(A^{*}\left(B_{Y^{*}}\right)\right)$.
Theorem
If $\mathrm{Sz}(A)>\omega$ or $\mathrm{Sz}\left(A^{*}\right)>\omega$ then the T_{n} 's factor through A and A^{*}.

Definition

Let $A: X \rightarrow Y$.

- A has property (β) if $\forall \varepsilon>0 \exists \delta>0 \forall x \in B_{X} \forall\left(x_{n}\right) \subset B_{X}$, with $\inf _{m \neq n}\left\|A x_{m}-A x_{n}\right\| \geqslant \varepsilon$, we have

$$
\inf _{n \geqslant 1}\left\|x-x_{n}\right\| \leqslant 2-\delta .
$$

- A is (β)-able if X admits an equivalent norm $|\cdot|$ such that $A:(X,|\cdot|) \rightarrow Y$ has property (β).
- X is β-able if $I: X \rightarrow X$ is (β)-able.

Theorem
A is (β)-able $\Leftrightarrow A$ is weakly compact, $(S z)(A)=\omega$, and $(S z)\left(A^{*}\right)=\omega$.

Remark
This is the asymptotic version of Beauzamy's renorming theorem

Theorem
If A is (β)-able then the $T_{n}^{\prime} s$ do not factor through A
Remark
The proof uses the self-improvement argument as in [Baudier-Zhang, '15].

Theorem
A is (β)-able $\Leftrightarrow A$ is weakly compact, $(S z)(A)=\omega$, and $(S z)\left(A^{*}\right)=\omega$.

Remark
This is the asymptotic version of Beauzamy's renorming theorem

Theorem
If A is (β)-able then the $T_{n}^{\prime} s$ do not factor through A
Remark
The proof uses the self-improvement argument as in [Baudier-Zhang, '15].

Remark
Our renorming results use techniques and results from [Lancien-Prochazka-Raja, '15] on higher order asymptotic uniform convexity.

