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Essential Circles

A little history

I 2001 Valera Berestovskii and P. studied generalized covering
spaces of topological groups based on a construction of
Schreier from the 1920’s, rediscovered by Malcev in the
1940’s, reinterpreted by us in terms of discrete chains and
homotopies

I 2001: Sormani-Wei independently developed the idea of
δ-covers of geodesics spaces, using a construction of Spanier

I 2007 Berestovskii-P. extended discrete homotopy ideas to
uniform spaces (hence metric spaces)

I 2013-15 P. and Jay Wilkins focused on metric spaces, showed
that Berestovskii-P. and Sormani-Wei constructions are
essentially equivalent for geodesic spaces, introduced essential
circles and found several applications.

I 2016 (In Preparation): Topological versions of these concepts
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Essential Circles

Discrete Homotopies in a Metric Space

Let X be a metric space.

Definition
For ε > 0, an ε-chain is a finite sequence {x0, ..., xn} such that for
all i , d(xi , xi+1) < ε. For any ε-chain α = {x0, ..., xn}, we define
its length by

L(α) :=
n

∑
i=1
d(xi , xi−1).

Definition
An ε-homotopy consists of a finite sequence 〈γ0, ...,γn〉 of
ε-chains, where each γi differs from its predecessor by a “basic
move”: adding or removing a single point, always leaving the
endpoints fixed.
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Essential Circles

Epsilon-Covers

Definition
Fixing a basepoint ∗, Xε is defined to be the set of all ε-homotopy
equivalence classes of ε-chains starting at ∗, and φε : Xε → X is
the endpoint map. Equivalence classes are denoted by [α]ε.

Definition
The group πε(X ) is the subset of Xε consisting of classes of
ε-loops starting and ending at ∗ with operation induced by
concatenation, i.e., [α]ε ∗ [β]ε = [α ∗ β]ε. We denote the reversal of
a chain α by α. As expected, for [α]ε ∈ πε(X ), ([α]ε)

−1 = [α]ε,
and the identity is [∗]ε.
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Essential Circles

The “Lifted Metric”

I There is a natural metric on Xε with the following properties

I When X is connected, φε is a regular covering map with deck
group πε(X ) (acting by preconcatenation)

I πε(X ) acts as isometries on Xε

I φε : Xε → X is an isometry from any ε
2 -ball onto its image
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Essential Circles

Additional Properties for Compact Geodesic Spaces

I For δ = 3ε
2 , φε : Xε → X is isometrically equivalent to the

δ-cover of Sormani-Wei

I If X is semi-locally simply connected, then φε : Xε → X is the
traditional universal covering map for all small enough ε

I For a Riemannian Manifold X , the metric on Xε is the
traditional lifted metric
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Essential Circles

Relationship to the Fundamental Group

I There is a natural function Λ taking the homotopy class of
any path to the ε-homotopy class of a subdivision ε-chain

I Restricting Λ to the fundamental group at any base point
yields a homomorphism π1(X )→ πε(X ), which is surjective
when Xε is connected
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Essential Circles

Homotopy Critical Values

Definition
An ε-loop λ in a metric space X is called ε-critical if λ is not
ε-null, but is δ-null for all δ > ε. When an ε-critical ε-loop exists, ε
is called a homotopy critical value; the collection of these values is
called the Homotopy Critical Spectrum.

I For geodesic spaces, this spectrum is discrete in (0,∞).
I Homotopy critical values are precisely the values of ε such
that the covers Xε change equivalence type.



Essential Circles

Homotopy Critical Values

Definition
An ε-loop λ in a metric space X is called ε-critical if λ is not
ε-null, but is δ-null for all δ > ε. When an ε-critical ε-loop exists, ε
is called a homotopy critical value; the collection of these values is
called the Homotopy Critical Spectrum.

I For geodesic spaces, this spectrum is discrete in (0,∞).

I Homotopy critical values are precisely the values of ε such
that the covers Xε change equivalence type.



Essential Circles

Homotopy Critical Values

Definition
An ε-loop λ in a metric space X is called ε-critical if λ is not
ε-null, but is δ-null for all δ > ε. When an ε-critical ε-loop exists, ε
is called a homotopy critical value; the collection of these values is
called the Homotopy Critical Spectrum.

I For geodesic spaces, this spectrum is discrete in (0,∞).
I Homotopy critical values are precisely the values of ε such
that the covers Xε change equivalence type.



Essential Circles

Two Basic Examples

I The geodesic circle of length L has exactly one homotopy
critical value: L3

I The 2-torus has two homotopy critical values or one of
multiplicity 2
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Essential Circles

Definition
An essential ε-circle consists of a path loop of length 3ε that
contains some ε-loop that is not ε-null.

I Essential circles are special closed geodesics that are
extrinsically isometric to standard circles.

I There is a natural equivalence of essential circles via “free”
discrete homotopies.

I Any three equally spaced points on an essential ε-circle are
called an essential ε-triad

I Essential triads are the discrete analog (logically equivalent)
to essential circles
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Essential Circles and the Homotopy Critical Spectrum

Theorem
If X is a compact geodesic space then ε > 0 is a homotopy critical
value of X if and only if X contains an essential ε-circle
(equivalently an essential ε-triad).

Lemma
Suppose T = {x0, x1, x2} is an essential ε-triad in a geodesic space
X and T ′ = {x ′0, x ′1, x ′2} is any set of three points such that
d(xi , x ′i ) <

ε
3 for all i . If T

′ is an essential triad then T ′ is an
ε-triad equivalent to T .
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Essential Circles

Controlled Discreteness of the Homotopy Critical Spectrum

Corollary
If X can be covered by N open a

3 -balls then there are at most(
N
3

)
non-equivalent essential triads (equivalently, homotopy

critical values counted with multiplicity) that are ε-triads for some
ε ≥ a.

I Letting C (X , a3 ) be the minimum number of a/3 balls needed
to cover X , recall that by Gromov’s Precompactness Criterion
C (X , a3 ) has a uniform lower bound CX ( a3 ) in any
Gromov-Hausdorff precompact class X of spaces.

I In particular, there are at most
(
CX ( a3 )
3

)
homotopy critical

values ≥ a for any space X in X
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Gromov’s Basis Theorem

Theorem
(Gromov) If X is a Riemannian manifold of diameter D,then
π1(X ) has a set of generators g1, ..., gk of length at most 2D and
relations of the form gigm = gj .

I Essentially the same argument holds if X is a semilocally
simply connected, compact geodesic space

I Advantage: to prove finiteness of fundamental groups one
needs only bound the number k of possible generators in some
class of spaces, since then there are at most 3k possible
relators, hence at most 23

k
different groups.
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Discrete, Quantitative version of Gromov’s Theorem

Theorem
Let X be a compact geodesic space of diameter D, and ε > 0.
Then πε(X ) has a finite set of generators [γ1]ε, ..., [γk ]ε and
relators of the form [γi ]ε[γj ]ε = [γm ]ε such that L(γi ) ≤ 2(D + ε)
for all i

with

k ≤ C
(
X ,

ε

4

) 8(D+ε)
ε
.

In particular, if we fix ε0 > 0, then the number of possible
isomorphism types of the groups πε(X ) with ε ≥ ε0 is finite in any
Gromov-Hausdorff precompact class of compact geodesic spaces.

I The proof involves constructing a finite 2-D symplicial
complex with edge group equal to πε(X )
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Essential Circles

What about small loops?

I If one has a uniform positive lower bound on the 1-systole
(smallest length of a non-contractible closed geodesic) in the
given Gromov-Hausdorff precompact class of spaces, then one
gets finiteness of fundamental groups in the class.

I This generalizes a finiteness theorem of Shen-Wei. But in
general, there may be no such bound in a Gromov-Hausdorff
precompact class. But we showed the following:

Theorem
With the previous hypotheses and if for 0 < δ < ε there are at
most M distinct non-trivial elements [α]δ ∈ πδ(X ) such that
|[α]δ| < ε then for the number k of generators of πδ(X ) we have

k ≤ M
[
8 (D + ε)

ε

] [
C
(
X ,

ε

4

)] 8(D+ε)
ε
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Essential Circles

Final Quantitative Extension of Gromov’s Theorem

Hitting the previous theorem with the function Λ, and letting
Γ(X , ε) be the maximum number of elements of π1(X , ∗) of
length ≤ ε for any basepoint ∗, we obtain:

Theorem
Suppose X is a semilocally simply connected, compact geodesic
space of diameter D, and let ε > 0. Then for any choice of
basepoint, π1(X ) has a set of generators g1, ..., gk of length at
most 2D and relations of the form gigm = gj with

k ≤ 8(D + ε)

ε
· Γ(X , ε) · C

(
X ,

ε

4

) 8(D+ε)
ε
.
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Generalizing Anderson, Shen-Wei Finiteness

Corollary
Let X be any Gromov-Hausdorff precompact class of semilocally
simply connected compact geodesic spaces. If there are numbers
ε > 0 and N such that for every X ∈ X , Γ(X , ε) ≤ N, then there
are finitely many possible fundamental groups for spaces in X .

I Anderson showed that with a uniform lower curvature bound
on Ricci curvature and volume, upper bound on diameter,
Γ(X , ε) is controlled

I Shen-Sormani proved this finiteness theorem with uniform
lower bound on 1-systol, i.e. Γ(X , ε) = 1 for small ε.

I Both earlier arguments use, in essential ways,
Gromov-Hausdorff precompactness of the universal covers,
which may not be true in the present generality.
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Essential Circles

The Topological Version

I All of the previously mentioned constructions depend on the
specific metric and not just the topology

I For example, there are flat tori with one or two homotopy
critical values depending on the metric

I To get topological versions we need to consider uniform spaces
I Compact topological spaces have a unique uniform structure
compatible with the topology

I So properties that depend only on the uniform structure are
topological invariants
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Essential Circles

Entourages and Uniform Spaces

I In a compact topological space X , an entourage E is a
symmetric subset of X × X that contains an open subset
containing the diagonal

I In a metric space Y , for any ε > 0 the metric entourage is the
set Eε := {(x , y) : d(x , y) < ε}.

I More generally, a uniform space is a topological space Z with
a particular collection of symmetric subsets of Z × Z called
entourages, each of which contains an open set containing the
diagonal

I The collection of entourages also satisfies a property
generalizing the triangle inequality

I Given an entourage E , the E -ball centered at x is
B(x ,E ) := {y : (x , y) ∈ E}
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Peano Continua and Geodesic Metrics

I Recall that a Peano continuum is a compact, metrizable space
that is connected and locally path connected.

I By a theorem of Bing-Moise, any Peano continuum admits a
geodesic metric.

I In a geodesic space, if d(x , y) < ε then x and y lie in the
same connected component of B(x , ε) ∩ B(y , ε) (in fact any
minimizing geodesic joining x and y lies in B(x , ε) ∩ B(y , ε).

I In the language of uniform spaces this translates as: If
(x , y) ∈ Eε then x and y lie in the same connected
component of B(x ,Eε) ∩ B(y ,Eε)
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Centourages

Definition
In a uniform space, an entourage E is called a called a centourage
if whenever (x , y) ∈ E , x and y lie in the same connected
component of B(x ,E ) ∩ B(y ,E ).

I By the Bing-Moise Theorem, every Peano continuum has a
uniform space basis of centourages (namely the metric
entourages of any geodesic metric)

I In a compact space, any property that depends only on the
collection of centourages is a topological invariant
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Centourage Covers

I In a uniform space, replace the statement “d(x , y) < ε”by
“(x , y) ∈ E”

I This generalizes ε-chains and ε-homotopies to E -chains and
E -homotopies

I One similarly constructs a space XE and endpoint mapping
φE : XE → X , where XE has a natural uniform structure (but
may not be compact!)

I With suffi cient connectivity properties, in particular if E is a
centourage, XE is connected and φE is a regular covering map
with deck group πE (X ) consisting of all E -homotopy classes
of E -loops. We call XE a centourage cover.

I Note that ε-covers of a geodesic space (compact or not) are
centourage covers
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The Centourage Spectrum

I For given centourage E , the kernel of the homomorphism
Λ : π1(X )→ πE (X ) is subgroup KE of π1(X ) called a
centourage group

I For a compact space, the collection of all centourage groups
and the inclusions among them (which we call the centourage
spectrum) is a topological invariant that refines the
fundamental group.

I But maybe every normal subgroup of π1(X ) is a centourage
group!

I And in fact we have few tools to show that a subgroup of
π1(X ) is not a centourage group. But:

Theorem
Let X be a Peano continuum. Then for any entourage F , there are
finitely many centourage groups KE such that F ⊂ E. In
particular, if X is semi-locally simply connected then X has finitely
many centourage groups (even when π1(X ) is infinite!).
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A Strange Topological Invariant

I The Möbius band M has Riemannian metrics (with boundary)
that Gromov-Hausdorff approximate RP2.

I So by a convergence theorem of P.-Wilkins, for some
Riemannian metrics the double cover of M is an ε-cover

I Therefore 2Z ⊂ Z =π1(M) is a centourage group
I On the other hand, the only centourage groups of the circle
are the trivial group and Z (Ellie Abernathy, in preparation)

I Hence this algebraic invariant distinguishes between the circle
and the Möbius band even though one is a deformation
retraction of the other!
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Thoughts on Resistance Metrics

I The results about ε-covers and groups apply to geodesic
metrics on fractals such as the Sierpínski gasket and carpet.

I Essential circles are “energy minimizing” in a discrete
homotopy class and determine a subset of the length
spectrum, which, for Riemannian manifolds, is related to the
spectrum of the Laplacian.

I But resistance metrics on fractals are not geodesic metrics
I Yet resistance metrics do have metric entourages, and one can
ask (1) whether they are centourages, (2) whether there are
analogs to essential circles, and if so (3) are those analogs
somehow related to the Laplacian on the space?
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I Essential circles are “energy minimizing” in a discrete
homotopy class and determine a subset of the length
spectrum, which, for Riemannian manifolds, is related to the
spectrum of the Laplacian.

I But resistance metrics on fractals are not geodesic metrics

I Yet resistance metrics do have metric entourages, and one can
ask (1) whether they are centourages, (2) whether there are
analogs to essential circles, and if so (3) are those analogs
somehow related to the Laplacian on the space?



Essential Circles

Thoughts on Resistance Metrics

I The results about ε-covers and groups apply to geodesic
metrics on fractals such as the Sierpínski gasket and carpet.
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