On embeddings of series-parallel graphs in Banach spaces.

Beata Randrianantoanina
(joint work with Mikhail Ostrovskii)

Department of Mathematics
Miami University
Ohio, USA

Metric Spaces: Analysis, Embeddings into Banach Spaces, Applications Texas A\&M University, College Station, Texas

July 5-9, 2016

What are series parallel graphs

Definition

A series
parallel graph $G=(V, E)$
with terminals $s, t \in V$ is either a single edge (s, t), or a series combination or a parallel combination of two series parallel graphs G_{1} and G_{2} with terminals s_{1}, t_{1} and s_{2}, t_{2}. The series combination of G_{1} and G_{2} is formed by setting $s=s_{1}, t=t_{2}$ and identifying $s_{2}=t_{1}$ the parallel combination is formed by identifying $s=s_{1}=s_{2}, t=t_{1}=t_{2}$.

A generalization of series parallel graphs

Graphs whose every maximal 2-connected component is a series parallel graph, these are graphs of treewidth 2,
they are characterized by exclusion of K_{4} as a minor.

Examples:

- Trees
- Diamonds
- Laakso graphs

Results about embeddings of series parallel graphs

- Bourgain 1986 X is not super-reflexive $\Longleftrightarrow \sup _{n} c_{X}\left(T_{n}\right)<\infty$
- Gupta, Newman, Rabinovich, Sinclair 2004 $c_{1}\left(\mathcal{F}_{K_{4}}\right) \leq 14$, where $\mathcal{F}_{K_{4}}$ is a family of graphs with a forbiden minor K_{4} Improved to $c_{1}\left(\mathcal{F}_{K_{4}}\right)=2$, by Chakrabarti, Jaffe, Lee, Vincent 2008, and Lee, Raghavendra 2010 Conjecture (GNRS2004) For every family \mathcal{F} of finite graphs $c_{1}(\mathcal{F})<\infty \Longleftrightarrow \mathcal{F}$ forbids some minor.
- Lee, Mendel, Naor 2004

For any $r \in \mathbb{N}$ there exists a constant $C(r)$ such that for every $0<\alpha<1$, an α-snowflake version of any K_{r}-excluded finite graph embeds into ℓ_{2} with distortion at most $C(r) / \sqrt{1-\alpha}$.

- Chekuri, Gupta, Newman, Rabinovich, Sinclair 2006 $c_{1}($ Outerplanar $(\mathrm{n})) \leq 2^{O(n)}, \quad \forall n \in \mathbb{N}$
- Lee, Sidiropoulos 2013

Every minor-closed family of finite graphs \mathcal{F} which does not contain every possible tree satisfies $c_{1}(\mathcal{F})<\infty$.

- Open Is c_{1} (Planar Graphs) $<\infty$?
- Johnson, Schechtman 2009 X is not super-reflexive $\Longleftrightarrow \sup _{n} c_{X}\left(D_{n}\right)<\infty$ $\Longleftrightarrow \sup c_{X}\left(L_{n}\right)<\infty$
Here D_{n}^{n} denotes the diamond graphs, and L_{n} denotes the Laakso graphs

Remark "It might very well be that Theorem 1 extends to any series parallel graph. We didn't pursue this farther."

Diamond graphs

Definition (Gupta, Newman, Rabinovich, Sinclair, 2004)
The diamond graph of level 0 , denoted D_{0}, contains two vertices joined by an edge.
The diamond graph D_{n} is obtained from D_{n-1} by replacing every edge $u v \in E\left(D_{n-1}\right)$, by a quadrilateral u, a, v, b, with edges $u a, a v, v b, b u$.

D_{1}

Outline of the talk

1. Examples of series parallel graphs which embed into arbitrary Banach spaces of low dimension,
2. A construction of embeddings of arbitrarily large multi-branching diamonds into arbitrary non-superreflexive Banach spaces.

Problem (Schechtman)

Fix $n \in \mathbb{N}$ satisfying $n \gg 1$ and a constant $K \gg 1$. Characterize all metric spaces admitting embeddings with distortion $\leq K$ into each n-dimensional Banach space.

Classical Answers

(A) Metric spaces admitting low-distortion embeddings into $\log n$-dimensional Euclidean spaces - consequence of the Dvoretzky theorem
(B) Equilateral spaces of size $\approx a^{n}$, where a depends on K.

A metric space is called equilateral if all non-zero distances are equal to each other.
(C) Metric spaces from the classes mentioned in (A) and (B) can be combined using a general construction, called the metric composition.
This includes ultrametric spaces.

Question of Gideon Schechtman

Can one suggest examples of metric spaces admitting embeddings with distortion $\leq K$ into each n-dimensional Banach space, which are completely different from the examples mentioned above?

Theorem (Ostrovskii, R 2015)
Yes.

Question of Gideon Schechtman

Can one suggest examples of metric spaces admitting embeddings with distortion $\leq K$ into each n-dimensional Banach space, which are completely different from the examples mentioned above?

Theorem (Ostrovskii, R 2015)

There exists a family of graphs $\left\{W_{n}\right\}_{n \in \mathbb{N}}$ with $\left|W_{n}\right| \rightarrow \infty$, so that for every $C \geq 1$ there exists a constant $D=D(C) \geq 1$ such that for all n, the graphs $W_{n} D$-embedd into every Banach space X with a Schauder basis with basis constant smaller than or equal to C and

$$
\operatorname{dim} X \geq \frac{1}{2}\left(\log _{2}\left|W_{n}\right|\right)^{2}
$$

Theorem (Szarek and Tomczak-Jaegermann 2009)
There exist absolute constants $A, B, C>0$ so that for every $n \geq A$ and for every n-dimensional normed space X, there exists a subspace $Y \subseteq X$ so that $\operatorname{dim} Y \geq B \exp \left(\frac{1}{2} \sqrt{\ln n}\right)$ and Y is C-isomorphic to an ℓ_{p}-space for some $p \in\{1,2, \infty\}$.

Corollary

There exist constants $c, N, D>0$ so that for every $n \geq N$, the graph W_{n} can be embedded with the distortion not exceeding D in every Banach space X so that

$$
\operatorname{dim} X \geq \exp \left(c\left(\log \log \left|W_{n}\right|\right)^{2}\right)
$$

Diamond graphs

Definition (Gupta, Newman, Rabinovich, Sinclair, 2004)
The diamond graph of level 0 , denoted D_{0}, contains two vertices joined by an edge.
The diamond graph D_{n} is obtained from D_{n-1} by replacing every edge $u v \in E\left(D_{n-1}\right)$, by a quadrilateral u, a, v, b, with edges $u a, a v, v b, b u$.

D_{1}

Weighted diamond graphs

Let $\varepsilon \in\left(0, \frac{1}{2}\right)$. The sequence $\left\{W_{n}\right\}_{n=0}^{\infty}$ of weighted diamonds is defined in terms of diamonds $\left\{D_{n}\right\}_{n=0}^{\infty}$ as follows:

- $W_{0}=D_{0}$. The one edge of D_{0} is given weight 1 .
- $W_{1}=D_{1} \cup W_{0}$ with edges of D_{1} given weights $\left(\frac{1}{2}+\varepsilon\right)$; weight of the edge of W_{0} stays as 1 .
- $W_{2}=D_{2} \cup W_{1}$ with edges of D_{2} given weights $\left(\frac{1}{2}+\varepsilon\right)^{2}$; weights of the edges of W_{1} stay as they were.
- $W_{n}=D_{n} \cup W_{n-1}$ with edges of D_{n} given weights $\left(\frac{1}{2}+\varepsilon\right)^{n}$; weights of the edges of W_{n-1} stay as they were in the previous step of the construction.
- Graphs $\left\{W_{n}\right\}$ are endowed with the shortest path distance.

Proposition

W_{n} 's are bilipschitz equivalent to snowflakes of D_{n} 's (with distortion $\leq \frac{8}{1-4 \varepsilon^{2}}$).

Definition

Let $\left(X, d_{X}\right)$ be a metric space and $0<\alpha<1$. The space X endowed with a modified metric $\left(d_{X}(u, v)\right)^{\alpha}$ is called a snowflake of $\left(X, d_{X}\right)$ (or an α-snowflaked version of $\left(X, d_{X}\right)$).

For $n \geq 2$,

$$
\frac{1}{2} 4^{n} \leq\left|W_{n}\right|<4^{n}
$$

W_{n} 's do not embed into low dimensional Euclidean spaces
The distortions of embeddings of W_{n} into $\ell_{2}^{k(n)}$ can be uniformly bounded only if $k(n) \geq c n=c \log \left(\left|W_{n}\right|\right)$ for some $c>0$.

Thus the Dvoretzky theorem only guarantees that W_{n} embed in any space of dimension $\geq C_{1}\left|W_{n}\right|^{C_{2}}$, for some $C_{1}, C_{2}>0$.

Our proof that W_{n} 's admit bounded-distortion embeddings into all Banach spaces with

$$
\operatorname{dim} X \geq \frac{1}{2}\left(\log _{2}\left|W_{n}\right|\right)^{2}
$$

if X has a basis, or, in general,

$$
\operatorname{dim} X \geq \exp \left(c\left(\log \log \left|W_{n}\right|\right)^{2}\right)
$$

uses a mixture of δ-net arguments and some "linear" manipulations.

More general examples

Definition

We define inductively a sequence $\left\{G_{n}\right\}_{n=0}^{\infty}$ of series parallel graphs, which we call corals.

Let $\lambda \in\left(\frac{1}{2}, 1\right)$ and $\left\{N_{i}\right\}_{i=0}^{\infty}$ be a sequence of natural numbers so that $N_{0}=2$ and $N_{i} \geq 1$ for all $i \geq 1$.

Vertices and edges of a coral come in generations denoted $\left\{V_{i}\right\}_{i=0}^{\infty}$ and $\left\{E_{i}\right\}_{i=0}^{\infty}$, respectively.

- $G_{0}=D_{0}$, i.e. V_{0} consists of two vertices v_{0}, v_{1} joined by one edge of weight 1 . Thus $G_{0}=\left(V_{0}, E_{0}\right)$, where $\left|V_{0}\right|=2$, $\left|E_{0}\right|=1$.
- Suppose that $\bigcup_{i=0}^{k} V_{i}, \bigcup_{i=0}^{k} E_{i}$, and G_{k} have been defined. Let V_{k+1} be a set of cardinality N_{k+1}, disjoint with $\bigcup_{i=0}^{k} V_{i}$. The vertex set of the graph G_{k+1} is $\bigcup_{i=0}^{k+1} V_{i}$.
The set E_{k+1} of new edges is a subset of edges joining the vertices of V_{k+1} with $\bigcup_{i=0}^{k} V_{i}$.
Every edge in E_{k+1} is given weight λ^{k+1}.
Edges in E_{k+1} are chosen so that each vertex in V_{k+1} has degree 1 or 2 and if a vertex $v \in V_{k+1}$ has degree 2 then it is adjacent to vertices $u, w \in \bigcup_{i=0}^{k} V_{i}$ which are joined by an edge $u w$ in E_{k}, i.e. uw is of length λ^{k} in G_{k}.

Figure: An example of a coral with a few generations

We define the function $L: \mathbb{N} \rightarrow \mathbb{N}$,

$$
L(i)= \begin{cases}1 & \text { if } i=1,2 \\ 2 & \text { if } i=3,4 \\ \left\lceil\log _{4} i\right\rceil & \text { if } i \geq 5\end{cases}
$$

$L(i)$ shows the dimension which is sufficient to accommodate i δ-separated points, for $\delta=1 / 16$, in the unit sphere.
Theorem
Let $C \geq 1$ and $\lambda \in(1 / 2,1)$. Then there exists a constant $D=D(C, \lambda)$, so that every coral G_{n} with parameters λ and $\left\{N_{i}\right\}_{i=0}^{n} \subset \mathbb{N}$, D-embeds into any Banach space X which contains a basic sequence with basis constant $\leq C$ and of length

$$
\sum_{i=0}^{n} L\left(N_{i}\right)
$$

Part 2. Embeddings of multibranching diamonds

Theorem
Let X be a non-superreflexive Banach space.
Then for every $n, k \in \mathbb{N}$, and for every $\varepsilon>0$, the multibranching diamond $D_{n, k}$ (n levels, k branches) embeds into X with distortion $\leq 9+\varepsilon$.

Definition (Brunel, Sucheston 1975)
A sequence $\left\{e_{n}\right\}$ is called

- equal signs additive (ESA) if for any finitely non-zero sequence $\left\{a_{i}\right\}$ of real numbers such that sign $a_{k}=\operatorname{sign} a_{k+1}$,

$$
\left\|\sum_{i=1}^{k-1} a_{i} e_{i}+\left(a_{k}+a_{k+1}\right) e_{k}+\sum_{i=k+2}^{\infty} a_{i} e_{i}\right\|=\left\|\sum_{i=1}^{\infty} a_{i} e_{i}\right\|
$$

- subadditive (SA) if for any finitely non-zero sequence $\left\{a_{i}\right\}$

$$
\left\|\sum_{i=1}^{k-1} a_{i} e_{i}+\left(a_{k}+a_{k+1}\right) e_{k}+\sum_{i=k+2}^{\infty} a_{i} e_{i}\right\| \leq\left\|\sum_{i=1}^{\infty} a_{i} e_{i}\right\|
$$

- invariant under spreading (IS) if for any finitely non-zero sequence $\left\{a_{i}\right\}$ and any increasing $\left(k_{i}\right)_{i}$

$$
\left\|\sum_{i=1}^{\infty} a_{i} e_{i}\right\|=\left\|\sum_{i=1}^{\infty} a_{i} e_{k_{i}}\right\|
$$

Theorem (Brunel, Sucheston 1975) ESA
\Longleftrightarrow (SA and IS)

Theorem (Brunel, Sucheston 1975)
For each non-superreflexive space X there is a Banach space E with an ESA basis which is finitely representable in X.

An embedding of $D_{1, k}$ into the space with the ESA basis.

We will work with sequences whose entries are 0 and ± 1. We shall write +1 as + and -1 as - .

We map the bottom of $D_{1, k}$ to 0 , and the top to
the sequence contains 2^{k} blocks of ++-- .
Note that the element $(++--)$ has 2 metric midpoints $(0+-0)$ and ($+00-$) whose distance from each other is

$$
\|(+-+-)\| \geq\|(+-00)\|=\frac{1}{2}\|(++--)\|
$$

The element
$v_{1}=(++--|++--|++--|++--|\ldots .|++--| 0000 \ldots)$,
has many midpoints.
Let r_{1}, \ldots, r_{k} be the Rademachers on $\left\{1,2,3, \ldots, 2^{k}\right\}$.
For $1 \leq i \leq k$, we define an element m_{i} using values of r_{i} :

$$
\nu \text {-th block of } m_{i}= \begin{cases}0+-0 & \text { if } r_{i}(\nu)=1 \\ +00- & \text { if } r_{i}(\nu)=-1\end{cases}
$$

By ESA, $\forall i$

$$
\left\|m_{i}\right\|=\frac{1}{2}\left\|v_{1}\right\|
$$

and

$$
\left\|m_{i}-m_{j}\right\| \geq \frac{1}{4}\left\|v_{1}\right\|
$$

$$
h^{(n)}=\underbrace{+\cdots+}_{2^{n}} \underbrace{-\cdots-\cdots}_{2^{n}}=\sum_{l=1}^{2^{n}} e_{l}-\sum_{l=2^{n+1}}^{2^{n+1}} e_{l}
$$

The element $h^{(n)}$ is supported on the interval $\left[1,2^{n+1}\right]$. Let

$$
h_{+}^{(n)}=\underbrace{0 \ldots 0}_{2^{n-1}} \underbrace{+\cdots}_{2^{n-1}}+\underbrace{-\cdots}_{2^{n-1}} \underbrace{0 \ldots 0}_{2^{n-1}},
$$

and

$$
h_{-}^{(n)}=\underbrace{+\cdots+}_{2^{n-1}} \underbrace{0 \ldots 0}_{2^{n-1}} \underbrace{0 \ldots 0}_{2^{n-1}} \underbrace{-\cdots-}_{2^{n-1}} .
$$

Note that by IS and ESA of the basis, we have

$$
\left\|h_{+}^{(n)}\right\|=\left\|h_{-}^{(n)}\right\|=\frac{1}{2}\left\|h^{(n)}\right\|=2^{n-1}\left\|e_{1}-e_{2}\right\|
$$

For any $\alpha=1, \ldots, n$, and $\left\{\varepsilon_{i}\right\}_{i=1}^{\alpha} \in\{ \pm 1\}_{i=1}^{\alpha}$, if $h_{\varepsilon_{1}, \ldots, \varepsilon_{\alpha-1}}^{(n)}$ is already defined, we define $h_{\varepsilon_{1}, \ldots, \varepsilon_{\alpha-1},+}^{(n)}$ to be the element which has + on $2^{n-\alpha}$ largest coordinates at which the element $h_{\varepsilon_{1}, \ldots, \varepsilon_{\alpha-1}}^{(n)}$ had + , and $h_{\varepsilon_{1}, \ldots, \varepsilon_{\alpha-1},+}^{(n)}$ has - on $2^{n-\alpha}$ smallest coordinates at which the element $h_{\varepsilon_{1}, \ldots, \varepsilon_{\alpha-1}}^{(n)}$ had - . We define $h_{\varepsilon_{1}, \ldots, \varepsilon_{\alpha-1},-}^{(n)} \stackrel{\text { def }}{=} h_{\varepsilon_{1}, \ldots, \varepsilon_{\alpha-1}}^{(n)}-h_{\varepsilon_{1}, \ldots, \varepsilon_{\alpha-1},+}^{(n)}$.

and so on.

We map the bottom vertex of $D_{n, k}$ to be zero, and the top vertex $x_{0}^{(n)}$ to the sum 2^{M} disjoint shifted copies of the element $h^{(n)}$, where M is big enough,

$$
x_{0}^{(n)}=\sum_{\nu=0}^{2^{M}-1} S^{2^{n+1} \nu}\left(h^{(n)}\right)
$$

By IS and ESA of the basis we have

$$
\left\|x_{0}^{(n)}\right\|=2^{n}\left\|\sum_{\nu=0}^{2^{M}-1} S^{2^{n+1} \nu}\left(e_{1}-e_{2}\right)\right\|=2^{n}\left\|\sum_{\nu=0}^{2^{M}-1} S^{2 \nu}\left(e_{1}-e_{2}\right)\right\|
$$

Let $r_{j}, j \in\{1, \ldots, M\}$, be the rademachers on $\left\{1, \ldots, 2^{M}\right\}$. For $\alpha \leq n$, and $\left(j_{1}, \ldots, j_{\alpha}\right) \in\{1, \ldots, M\}^{\alpha}$, we denote by $r_{\left(j_{1}, \ldots, j_{\alpha}\right)}$ the α-tuple of the rademachers

$$
r_{\left(j_{1}, \ldots, j_{\alpha}\right)}=\left(r_{j_{1}}\right)_{l=1}^{\alpha}
$$

We define the image of a vertex $v_{\lambda ; j_{1}, \ldots, j_{s}(\lambda)}^{(n)}$ from level λ to be

$$
x_{\lambda ; j_{1}, \ldots, j_{s(\lambda)}}^{(n)}=\sum_{\nu=0}^{2^{M}-1} S^{2^{n+1} \nu}\left(\sum_{\alpha=1}^{s(\lambda)} \lambda_{\alpha} h_{r_{\varphi\left(j_{1}, \ldots, j_{\alpha}\right)}^{(\nu)}}^{(\nu)}\right)
$$

Thank you.

