Bi-Lipschitz embeddings of Grushin spaces

Matthew Romney

University of Illinois at Urbana-Champaign

7 July 2016

Definition

A map $f: (X, d_X) \rightarrow (Y, d_Y)$ is *bi-Lipschitz* if $C^{-1}d_X(x, y) \leq d_Y(f(x), f(y)) \leq Cd_X(x, y)$ for some C > 1 and all $x, y \in X$.

Question

What conditions on a metric space imply that it can or cannot be embedded in a well-known model space (e.g. Euclidean spaces, hyperbolic spaces) under a bi-Lipschitz mapping?

Historical summary

- Seminal result by Assouad [Ass83] (discussed below)
- Studied intensively in series of papers by Semmes in 1990's (e.g. [Sem93] [Sem96] [Sem99]) using ideas from harmonic analysis and fractal geometry; 'easy conjectures' shown false
- Studied by Lang and Plaut [LP01] using ideas from Alexandrov geometry
- Lafforgue and Naor [LN14], others

Definition

A metric space X is *doubling* if there is a C > 1 such that every ball B(x, r) can be covered by C balls of radius r/2.

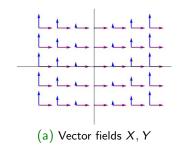
Theorem ([Ass83])

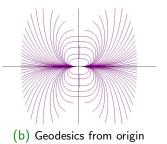
Let (X, d) be a doubling metric space. Then, for all $\alpha \in (0, 1)$, the "snowflaked" space (X, d^{α}) can be bi-Lipschitz embedded in a finite-dimensional Euclidean space.

• Snowflaking distorts geometry of X: rectifiablity of curves, Hausdorff dimension.

The Grushin plane

- Given $\alpha \ge 0$, the vector fields $X = \partial_x$ and $Y = |x|^{\alpha} \partial_y$ define a sub-Riemannian metric on \mathbb{R}^2 .
- X|_(x,y), Y|_(x,y) form an orthonormal basis for the tangent space at each point in ℝ² \ {(x,y) : x = 0}.
- There are higher-dimensional Grushin spaces; these are defined similarly but with more vector fields.





The Grushin plane

• Length of path γ given by

$$\ell(\gamma) = \int_{\gamma} \sqrt{dx^2 + |x|^{-2lpha} dx^2}$$

- Distance between two points z₁, z₂ is d_α(z₁, z₂) = inf ℓ(γ) taken over all absolutely continuous paths from z₁ to z₂.
- Resulting metric space (G²_α, d_α) is Riemannian manifold except on *singular line* {(x, y) : x = 0}; topologically it is ℝ².

- Observed by Semmes that Heisenberg group cannot be embedded in Euclidean space, even locally (cf. Cheeger's differentiability theorem) [Sem96]
- Grushin plane studied by Seo [Seo11] in her thesis; shown to be embeddable
- Grushin plane shown by Meyerson [Mey11] to be quasisymmetrically equivalent to Euclidean plane
- Explicit embedding yielding optimal target dimension of 3 constructed by Wu [Wu15]; generalized to α-Grusin plane by R. and Vellis [RVar]

Theorem ([Seo11])

A doubling metric space (X, d) admits a bi-Lipschitz embedding into some Euclidean space if and only if the following hold:

- (1) There is a closed subset Y of X which admits a bi-Lipschitz embedding into some \mathbb{R}^{M_1} .
- (2) There is a Christ-Whitney decomposition of $\Omega = X \setminus Y$ such that each cube admits a bi-Lipschitz embedding into some \mathbb{R}^{M_2} with uniform bi-Lipchitz constant.
 - Used by Seo to prove embeddability of the Grushin plane

Definition (Christ-Whitney decomposition)

Let X be a metric space. For an open subset $\Omega \subsetneq X$, a *Christ-Whitney decomposition of* Ω *with data* (δ, c_0, C_1, a) , where $0 < \delta < 1$, $0 < c_0 < C_1$, $a \ge 4$, is a collection M_{Ω} of disjoint open subsets of X satisfying the following properties:

• It is straightforward to verify any proper open subset of a doubling metric space has a Christ-Whitney decomposition, subject to mild restrictions on the data.

 \bullet Define the map $\varphi:\mathbb{G}^2_\alpha\to\mathbb{R}^2$ by

$$(u,v) = \varphi(x,y) = \left(\frac{1}{1+\alpha}|x|^{\alpha}x,y\right).$$

- This map appears in [Bec01], [MM04], [Mey11]
- \bullet The push-forward of the $\alpha\mbox{-}{\rm Grushin}$ line element under φ is

$$ds'=rac{1}{(1+lpha)^{lpha/(1+lpha)}}\sqrt{du^2+dv^2}.$$

Definition of conformal Grushin spaces

Definition

Let $n \in \mathbb{N}$, let $Y \subset \mathbb{R}^n$ be a nonempty closed set, and let $\beta \in [0, 1)$. The (Y, β) -Grushin space is the space \mathbb{R}^n equipped with the metric determined by the line element

$$ds = rac{ds_E}{d_E(\cdot, Y)^eta}.$$

The (Y, β) -Grushin metric is denoted here by d_Y . The Euclidean metric is denoted by d_E .

- Similar metric on proper domain Ω ⊂ ℝ² considered by Gehring–Martio [GM85], Lappalainen [Lap85], Langmeyer [Lan98] (sub-quasihyperbolic metric)
- Take $Y = \{0\} \subset \mathbb{R}^2$ as singular set. The (Y, β) -Grushin plane is path-isometric to a cone in \mathbb{R}^3 with angular defect $2\pi\beta$.

Theorem

Let $n \in \mathbb{N}$, $Y \subset \mathbb{R}^n$ be closed, nonempty, and $\beta \in [0, 1)$. If the (Y, β) -Grushin space satisfies the Hölder condition $d_Y(x, y) \leq Hd_E(x, y)^{1-\beta}$ for some H > 0 and all $x, y \in \mathbb{R}^n$, then the (Y, β) -Grushin space admits a bi-Lipschitz embedding in some Euclidean space of sufficiently high dimension.

 In the following, we will always assume that the (Y, β)-Grushin space satisfies this Hölder condition.

Proposition

Let $X \subset \mathbb{R}^n$ be a nonempty closed set such that $\Omega = \mathbb{R}^n \setminus X$ is the union of finitely many uniform domains and $\overline{\Omega} = \mathbb{R}^n$. Then for all $\beta \in [0, 1)$ and any nonempty closed subset $Y \subset X$, the (Y, β) -Grushin space satisfies the Hölder condition of the main theorem.

- Proof is an application of Seo's embedding criterion. We must check:
 - (1) doubling property
 - (2) embeddability of singular set Y
 - (3) uniform embedding of Christ-Whitney cubes
- (2) is immediate by Assouad's theorem since metric on singular set is bi-Lipschitz equivalent to snowflake of Euclidean metric.
- (3) is technical though elementary: we show that $d_Y \simeq d_E(Q, Y)^{-\beta} d_E$ for each cube Q of sufficiently fine Christ-Whitney decomposition.

Quasisymmetric parametrization

- (1) follows from proving a stronger result that the identity map is a quasisymmetry from ℝⁿ to the (Y, β)-Grushin space.
- A topological embedding $f : (X, d_X) \to (Y, d_Y)$ is quasisymmetric if there exists a homeomorphism $\eta : [0, \infty) \to [0, \infty)$ such that

$$\frac{d_Y(f(x), f(y))}{d_Y(f(x), f(z))} \le \eta(t)$$

whenever the distinct points $x, y, z \in X$ satisfy $d_X(x, y) \le t d_X(x, z)$.

• Quasisymmetric maps preserve the doubling property of a space.

References

Colleen Ackermann.

An approach to studying quasiconformal mappings on generalized Grushin planes.

Ann. Acad. Sci. Fenn., 40(1):305–320, 2015.

Patrice Assouad. Plongements lipschitziens dans Rⁿ. Bull. Soc. Math. France, 111(4):429–448, 1983.

William Beckner.

On the Grushin operator and hyperbolic symmetry. *Proc. Amer. Math. Soc.*, 129(4):1233–1246, 2001.

F. W. Gehring and O. Martio.
Lipschitz classes and quasiconformal mappings.
Ann. Acad. Sci. Fenn. Ser. A I Math., 10:203–219, 1985.

Navah Langmeyer.