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The linear background

For 1 ≤ p,q ≤ 2, `p(`q) isomorphically embeds into
L1 = L1(0,1) if and only if p ≤ q.
I am not sure who was the first to prove that for p > q `p(`q)
does not embed into L1 but the best proof of that with the right
estimates for the distance of `n

p(`
m
q ) from a subspace of L1

follows from an inequality of Kwapień and Schütt.
For all n and all {zjk}nj,k=1 ⊆ L1,

1
n

n∑
j=1

∑
ε∈{−1,1}n

∥∥∥ n∑
k=1

εkzjk

∥∥∥
1
.

1
n!

∑
π∈Sn

∑
ε∈{−1,1}n

∥∥∥ n∑
j=1

εjzjπ(j)

∥∥∥
1
,

where Sn is the group of all permutations of {1, . . . ,n}.
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The linear background

1
n
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k=1

εkzjk

∥∥∥
1
.

1
n!

∑
π∈Sn

∑
ε∈{−1,1}n

∥∥∥ n∑
j=1

εjzjπ(j)

∥∥∥
1
.

——————————————————————————–
If {zjk}nj,k is the natural basis of `n

p(`
n
q),

1
n

n∑
j=1

∥∥∥ n∑
k=1

εkzjk

∥∥∥ = n1/q

and
1
n!

∑
π∈Sn

∥∥∥ n∑
j=1

εjzjπ(j)

∥∥∥ = n1/p.

So n
1
p−

1
q . d(`n

p(`
n
q),SL1).
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The non-linear background

A metric space (X ,dX ) is said to admit a bi-Lipschitz
embedding into a metric space (Y ,dY ) if there exist s ∈ (0,∞),
D ∈ [1,∞) and a mapping f : X → Y such that

∀ x , y ∈ X , sdX (x , y) ≤ dY (f (x), f (y)) ≤ DsdX (x , y).

When this happens we say that that (X ,dX ) embeds into
(Y ,dY ) with distortion at most D. We denote by cY (X ) the
infimum over such D ∈ [1,∞]. When Y = Lp we use the shorter
notation cLp(X ) = cp(X ).
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The non-linear background

We will be interested in lower bounding the distortion of
embedding the `n

p sum of the discrete cube Fn
2 with the `q norm

into L1. In this lecture we shall restrict ourselves to the case
p = 2 and q = 1.
So we’re interested in c1(`

n
2(F

n
2)) where Fn

2 is the n-dimensional
discrete hypercube, endowed with the metric inherited from `n

1
via the identification Fn

2 = {0,1}n ⊂ Rn.
By general principles (ultraproduct, w∗-Gâteaux differentiation),
the above stated result of Kwapień and Schütt formally implies
that

lim
n→∞

c1(`
n
2(F

n
2)) =∞,

but such arguments don’t give quantitative results.
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The non-linear background

Our main result is

Theorem

c1(`
n
2(F

n
2)) �

√
n.

More generally

Theorem
For all 1 ≤ p < q

c1(`
n
q(Fn

2, ‖ · ‖p)) � n
1
p−

1
q .
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The non-linear background

Recalling

1
n

n∑
j=1

∑
ε∈{−1,1}n

∣∣∣ n∑
k=1

εkzjk

∣∣∣ .
1
n!

∑
π∈Sn

∑
ε∈{−1,1}n

∣∣∣ n∑
j=1

εjzjπ(j)

∣∣∣
it is tempting to try and prove the inequality

1
n

n∑
j=1

∑
x∈Mn(F2)

∣∣∣f(x +
n∑

k=1

ejk

)
− f (x)

∣∣∣
≤ K

n!

∑
π∈Sn

∑
x∈Mn(F2)

∣∣∣f(x +
n∑

j=1

ejπ(j)

)
− f (x)

∣∣∣
for every n ∈ N and every f : Mn(F2)→ R.
This follows a paradigm set out by Enflo in the 70-s. For
f (x) =

∑n
i=1
∑n

k=1(−1)xik zik we recover the linear inequality.
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The non-linear background

But the inequality we propose never holds. Even

1
n

n∑
j=1

∑
x∈Mn(F2)

dX

(
f
(

x +
n∑

k=1

ejk

)
, f (x)

)

≤ K
n!

∑
π∈Sn

∑
x∈Mn(F2)

dX

(
f
(

x +
n∑

j=1

ejπ(j)

)
, f (x)

)
for every n ∈ N and every f : Mn(F2)→ R does not hold in any
metric space X with more than one point:
For n odd and a 6= b ∈ X define

f (x) = a if
n−1∑
i=1

n∑
k=1

xik = 0

and

f (x) = b if
n−1∑
i=1

n∑
k=1

xik = 1.

Then the left hand side of the inequality is positive and the right
hand side 0.
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The inequality

Replace the inequality of Kwapień and Schütt with

1
n

n∑
j=1

∑
ε∈{−1,1}n

∥∥∥ n∑
k=1

εkzjk

∥∥∥
1
≤ C

nn

∑
k∈{1,...,n}n

∑
ε∈{−1,1}n

∥∥∥ n∑
j=1

εjzjkj

∥∥∥
1

for every n ∈ N and every {zjk}nj,k=1 ⊂ L1.
This, provided it holds, is as good to prove that c1(`

n
2(`

n
1)) &

√
n.

It turns out that this inequality holds, generalizes to an
appropriate metric inequality, and the proof of the metric
inequality is even simpler than that of the original KS inequality.

Gideon Schechtman Pythagorean powers of hypercubes



The inequality

Replace the inequality of Kwapień and Schütt with
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The inequality

Theorem
For all n ∈ 2N and every f : Mn(F2)→ L1 we have

1
n

n∑
j=1

∑
x∈Mn(F2)

∥∥∥f
(

x +
n∑

k=1

ejk

)
− f (x)

∥∥∥
1

≤ 2e2

e2 − 1
1
nn

∑
k∈{1,...,n}n

∑
x∈Mn(F2)

∥∥∥f
(

x +
n∑

j=1

ejkj

)
− f (x)

∥∥∥
1
.

2e2

e2−1 is the best constant.
The linear inequality follows from the nonlinear one by using

f (x) =
n∑

j=1

n∑
k=1

(−1)xjk zjk .
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The inequality

We’ll prove a more general theorem

Theorem
For all 1 ≤ p ≤ 2, all n ∈ 2N and every f : Mn(F2)→ Lp we have

1
n

n∑
j=1

∑
x∈Mn(F2)

∥∥∥f
(

x +
n∑

k=1

ejk

)
− f (x)

∥∥∥p

p

≤ 2e2

e2 − 1
1
nn

∑
k∈{1,...,n}n

∑
x∈Mn(F2)

∥∥∥f
(

x +
n∑

j=1

ejkj

)
− f (x)

∥∥∥p

p
.

Since for 1 ≤ p ≤ 2 "Lp
p isometrically embeds into L2

2" (i.e., there
is a map g : Lp → L2 with ‖g(x)− g(y)‖22 = ‖x − y‖pp -
Schoenberg) and since the statements are purely metric, it is
enough to prove the theorem for p = 2.
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Schoenberg) and since the statements are purely metric, it is
enough to prove the theorem for p = 2.
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The proof

Need to prove.

Theorem
For all n ∈ 2N and every f : Mn(F2)→ R we have

1
n

n∑
j=1

∑
x∈Mn(F2)

∣∣∣f(x +
n∑

k=1

ejk

)
− f (x)

∣∣∣2
≤ 2e2

e2 − 1
1
nn

∑
k∈{1,...,n}n

∑
x∈Mn(F2)

∣∣∣f(x +
n∑

j=1

ejkj

)
− f (x)

∣∣∣2.
We can now use simple Fourier Analysis.
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The proof

f (x) =
∑

A1,...,An⊂{1,...,n}

f̂ (A1, . . . ,An)(−1)
∑n

j=1
∑

k∈Aj
xjk
,

where for every A1, . . . ,An ⊂ {1, . . . ,n},

f̂ (A1, . . . ,An) =
1

2n2

∑
x∈Mn(F2)

(−1)
∑n

j=1
∑

k∈Aj
xjk f (x).
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The proof

Then, for every x ∈ Mn(F2) and j ∈ {1, . . . ,n} we have

f
(

x +
n∑

k=1

ejk

)
− f (x)

=
∑

A1,...,An⊂{1,...,n}

f̂ (A1, . . . ,An)
(
(−1)|Aj | − 1

)
(−1)

∑n
s=1

∑
k∈As xsk

= −2
∑

A1,...,An⊂{1,...,n}
|Aj | odd

f̂ (A1, . . . ,An)(−1)
∑n

s=1
∑

k∈As xsk .

And

1
2n2

n∑
j=1

∑
x∈Mn(F2)

(
f
(

x +
n∑

k=1

ejk

)
− f (x)

)2

= 4
∑

A1,...,An⊂{1,...,n}

∣∣{j ∈ {1, . . . ,n} : |Aj | odd
}∣∣ f̂ (A1, . . . ,An)

2.
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(−1)

∑n
j=1 1Aj

(kj ) − 1
)
(−1)
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j=1

∑
k∈Aj

xjk
.

And

1
2n2

∑
k∈{1,...,n}n

∑
x∈Mn(F2)

(
f
(

x +
n∑

j=1

ejkj

)
− f (x)

)2

=
∑

k∈{1,...,n}n

∑
A1,...,An⊂{1,...,n}

f̂ (A1, . . . ,An)
2
(
(−1)

∑n
j=1 1Aj

(kj ) − 1
)2

= 2
∑

A1,...,An⊂{1,...,n}

f̂ (A1, . . . ,An)
2

∑
k∈{1,...,n}n

(
1− (−1)

∑n
j=1 1Aj

(kj )
)
.
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The proof

So need to prove

1
n

∑
A1,...,An⊂{1,...,n}

∣∣{j ∈ {1, . . . ,n} : |Aj | odd
}∣∣ f̂ (A1, . . . ,An)

2

≤ K
nn

∑
A1,...,An⊂{1,...,n}

f̂ (A1, . . . ,An)
2

∑
k∈{1,...,n}n

(
1− (−1)

∑n
j=1 1Aj

(kj )
)
.

Or

1
n
∣∣{j ∈ {1, . . . ,n} : |Aj | odd

}∣∣
≤ K

nn

∑
k∈{1,...,n}n

(
1− (−1)

∑n
j=1 1Aj

(kj )
)

for all A1, . . . ,An ⊂ {1, . . . ,n}.
Note that what this amounts to is just proving the inequality for f
being one of the Walsh functions.
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The proof

Put S =
{

j ∈ {1, . . . ,n} : |Aj | odd
}

.

∑
k∈{1,...,n}n

(
1− (−1)

∑n
j=1 1Aj

(kj )
)
= nn −

n∏
j=1

n∑
k=1

(−1)1Aj
(k)

= nn−
n∏

j=1

(
n − 2|Aj |

)
≥ nn−

n∏
j=1

∣∣2|Aj |−n
∣∣ ≥ nn−nn−|S|(n−2)|S|.

Since the mapping |S| 7→
(
nn − nn−|S|(n − 2)|S|

)
/|S| is

decreasing in |S|,∑
k∈{1,...,n}n

(
1− (−1)

∑n
j=1 1Aj

(kj )
)

≥ nn − (n − 2)n

n
∣∣{j ∈ {1, . . . ,n} : |Aj | odd

}∣∣ .
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